Точное соотношение биомассы в океане. В Мировом океане становится всё меньше фитопланктона

В настоящее время на Земле известны около 500 тыс. видов растений, более 1,5 миллионов видов животных. 93% их населяют сушу, а 7% являются обитателями водной среды (таблица).

Таблица. Биомасса организмов на Земле

Масса сухого вещества

Континенты

Океаны

Зелёные расте-ния

Живот-ные и микро-организ-мы

Зелёные расте-ния

Живот-ные и микроорга-низмы

Общее коли-чество

Проценты

Из данных таблицы видно, что хотя океаны и занимают около 70% земной поверхности, однако они образуют всего 0,13% биомассы Земли.

Образование почвы происходит биогенным путём, она состоит из неорганических и органических веществ. Вне биосферы образование почвы невозможно. Под воздействием микроорганизмов , растений и животных на горных пород ах начинает постепенно формироваться почвенный слой Земли. Накопленные в организмах биогенные элементы после их гибели и разложения опять переходят в почву.

Процессы, происходящие в почве, являются важным компонен-том круговорота веществ в биосфере . Хозяйственная деятельность человека может привести к постепенному изменению состава почвы и гибели живущих в ней микроорганизмов. Вот почему необходима разработка мер разумного использования почвы. Материал с сайта

Гидросфера играет важную роль в распределении тепла и влажности по планете , в круговороте веществ , поэтому она также оказывает мощное влияние на биосферу. Вода является важным компонентом биосферы и одним из наиболее необходимых факторов для жизни организмов. Основная часть воды находится в океанах и морях. В состав океанической и морской воды входят минеральные соли, содержащие около 60 химических элементов. Кислород и углерод, необходимые для жизни организмов, хорошо растворяются в воде. Водные животные в процессе дыхания выделяют углекислый газ, а растения в результате фотосинтеза обогащают воду кислородом.

Планктон

В верхних слоях океанических вод, достигающих в глубину 100 м, широко распространены одноклеточные водоросли и микроор-ганизмы, которые образуют микропланктон (от греч. plankton — блуждающий).

Около 30% фотосинтеза, осуществляющегося на нашей планете , происходит в воде. Водоросли, воспринимая солнечную энергию, превращают её в энергию химических реакций. В питании водных организмов основное значение имеет планктон .


Биомасса – _____________________________________________________________________________________________ (полная 2420 млрд. т)

Распределение живого вещества по планете

Представленные в таблице данные свидетельствуют о том, что основная масса живого вещества биосферы (свыше 98,7%) сосредоточена на ______________. Вклад _______________ в общую биомассу составляет только 0,13%.

На суше преобладает __________________________ (99,2%), в океане - ____________ (93,7%). Однако сопоставляя их абсолютные величины (соответственно 2400 млрд т растений и 3 млрд т животных), можно сказать, что живое вещество планеты преимущественно представлено _________________________________. Биомасса организмов, не способных к фотосинтезу, составляет менее 1% .

1. Биомасса суши _______________ от полюсов к экватору. Наибольшая биомасса живого вещества суши сконцентрирована в _____________________ в силу их высокой продуктивности.

2. Биомасса Мирового океана – __________________________________________________ (2/3 поверхности Земли). Не смотря на то, что биомасса наземных растений превосходит биомассу океанических живых организмов в 1000 раз, общий объем первичной годовой продукции Мирового океана сопоставим с объемом продукции растений суши, т.к. ______________________________________________________________________________________

_______________________________________________________________________________________________.

3. Биомасса почвы – ________________________________________________________________________________

В почве находятся:


* М__________________,

* П______________,

* Ч_____________,

* Р_______________________________________;


Почвенные микроорганизмы – __________________________________________________________________

____________________________________________________________________________________________.

* играют важную роль в круговороте веществ в природе, почвообразовании и формировании плодородия почв

* могут развиваться не только непосредственно в почве, но и в разлагающихся растительных остатках

* встречаются некоторые болезнетворные микробы, водные микроорганизмы и др., которые случайно попадают в почву (при разложении трупов, из желудочно-кишечного тракта животных и человека, с поливной водой или др. путями) и, как правило, быстро в ней погибают

* некоторые из них сохраняются в почве длительное время (например, сибиреязвенные бациллы, возбудители столбняка) и могут служить источником инфекции для человека, животных, растений

* по общей массе составляют большую часть микроорганизмов нашей планеты: в 1 г чернозема содержится до 10 млрд. (иногда и более) или до 10 т/га живых микроорганизмов

* представлены как прокариотами (бактерии, актиномицеты, синезелёные водоросли), так и эукариотами (грибы, микроскопические водоросли, простейшие)

* верхние слои почвы богаче почвенными микроорганизмами по сравнению с нижележащими; особое обилие – характерно для прикорневой зоны растений - ризосферы.

* способны разрушать все природные органические соединения, а также ряд неприродных органических соединений.

Толща почвы пронизана корнями растений, грибами. Она является средой обитания для многих животных: инфузорий, насекомых, млекопитающих и др.

Биосфера - область распространения живых организмов на планете Земля. Жизнедеятельность организмов сопровождается вовлечением в состав их тела разнообразных химических элементов, необходимых им для построения собственных органических молекул. В результате формируется мощный поток химических элементов между всем живым веществом планеты и средой его обитания. После гибели организмов и разложения их тел до минеральных элементов вещество возвращается во внешнюю среду. Так осуществляется непрерывный круговорот веществ - необходимое условие для поддержания непрерывности жизни. Наибольшая масса живых организмов сосредоточена на границе соприкосновения литосферы, атмосферы и гидросферы. По биомассе в океане преобладают консументы, на суше - продуценты. На нашей планете нет более активного и мощного в геохимическом отношении вещества, чем живое вещество.

Домашнее задание: §§ 45, с.188-189.


Занятие 19. Повторение и обобщение изученного материала

Цель: систематизировать и обобщить знания по курсу биологии.

Основные вопросы:

1. Общие свойства живых организмов:

1) единство химического состава,

2) клеточное строение,

3) обмен веществ и энергии,

4) саморегуляция,

5) подвижность,

6) раздражимость,

7) размножение,

8) рост и развитие,

9) наследственность и изменчивость,

10) адаптация к условиям существования.

1) Неорганические вещества.

а) Вода и ее роль в жизни живых организмов.

б) Функции воды в организме.

2) Органические вещества.

* Аминокислоты - мономеры белков. Незаменимые и заменимые аминокислоты.

* Многообразие белков.

* Функции белков: структурная, ферментативная, транспортная, сократительная, регуляторная, сигнальная, за­щитная, токсическая, энергетическая.

б) Углеводы. Функции углеводов: энергетическая, структурная, метаболическая, запасающая.

в) Липиды. Функции липидов: энергетическая, строительная, защитная, теплоизоляционная, регуляторная.

г) Нуклеиновые кислоты. Функции ДНК. Функции РНК.

д) АТФ. Функция АТФ.


3. Клеточная теория: основные положения.

4. Общий план строения клетки.

1) Цитоплазматическая мембрана.

2) Гиалоплазма.

3) Цитоскелет

4) Клеточный центр.

5) Рибосомы..

6) Эндоплазматическая сеть (шероховатая и гладкая),

7) комплекс Гольджи.

8) Лизосомы.

9) Вакуоли.

10) Митохондрии.

11) Пластиды.

5. Понятие о кариотипе, гаплоидном и диплоидном наборах хромосом.

6. Деление клетки: биологическое значение деления.

7. Понятие о жизненном цикле клетки.

8. Общая характеристика обмена веществ и превращения энергии.

1) Понятие

а) обмена веществ,

б) ассимиляции и диссимиляции,

в) анаболизма и катаболизма,

г) пластического и энергетического обменов.

9. Структурная организация живых организмов.

а) Одноклеточные организмы.

б) Сифоновая организация.

в) Колониальные организмы.

г) Многоклеточные организмы.

д) Ткани, органы и системы органов растений и животных.

10. Многоклеточный организм - целостная интегрированная система. Регуляция жизненных функций организмов.

1) Понятие о саморегуляции.

2) Регуляция процессов метаболизма.

3). Нервная и гуморальная регуляция.

4) Понятие об иммунной защите организма.

а) Гуморальный иммунитет.

б) Клеточный иммунитет.

11. Размножение организмов:

а) Понятие размножения.

б) Типы размножения организмов.

в) Бесполое размножение и его формы (деление, спорообразование, почкование, фрагментация, вегетативное размножение).

г) Половое размножение: понятие полового процесса.

12. Понятие наследственности и изменчивости.

13. Изучение наследственности Г. Менделем.

14. Решение задач на моногибридное скрещивание.

15. Изменчивость организмов

Формы изменчивости:

а) Ненаследственная изменчивость

б) Наследственная изменчивость

в) Комбинативная изменчивость.

г) Модификационная изменчивость.

д) Понятие мутации

16. Построение вариационного ряда и кривой; нахождение средней величины признака по формуле:

17. Методы изучения наследственности и изменчивости человека (генеалогический, близнецовый, цитогенетический, дерматоглифический, популяционно-статистический, биохимический, молекулярно-генетический).

18. Врожденные и наследственные заболевания человека.

а) Генные болезни (фенилкетонурия, гемофилия).

б) Хромосомные болезни (синдром полисомии по Х-хромосоме, синдром Шерешевского-Тернера, синдром Кляйнфельтера, синдром Дауна).

в) Профилактика наследственных болезней. Медико-генетическое консультирование.

19. Уровни организации живых систем.

1. Экология как наука.

2. Экологические факторы.

а) Понятие о факторах среды (экологических факторах).

б) Классификация экологических факторов.

20. Вид - биологическая система.

а) Понятие вида.

в) Критерии вида.

21. Популяция - структурная единица вида.

22. Характеристика популяции.

а) Свойства популяции: численность, плотность, рождаемость, смертность.

б) Структура популяции: пространственная, половая, возрастная, этологическая (поведенческая).

23. Экосистема. Биогеоценоз.

1) Связи организмов в биоценозах: трофические, топические, форические, фабрические.

2) Структура экосистемы. Продуценты, консументы, редуценты.

3) Цепи и сети питания. Пастбищные и детритные цепи.

4) Трофические уровни.

5) Экологические пирамиды (чисел, биомасс, энергии пищи).

6) Биотические связи организмов в экосистемах.

а) конкуренция,

б) хищничество,

в) симбиоз.

24. Гипотезы происхождения жизни. Основные гипотезы происхождения жизни.

25. Биологическая эволюция.

1. Общая характеристика теории эволюции Ч. Дарвина.

2. Результаты эволюции.

3. Приспособления - основной результат эволюции.

4. Видообразование.

26.Макроэволюция и ее доказательства. Палеонтологические, эмбриологические, сравнительно-анатомические и молекулярно-генетические доказательства эволюции.

27. Главные направления эволюции.

1) Прогресс и регресс в эволюции.

2) Пути достижения биологического прогресса: арогенез, аллогенез, катагенез.

3) Способы осуществления эволюционного процесса (дивергенция, конвергенция).

28. Многообразие современного органического мира как результат эволюции.

29. Классификация организмов.

1) Принципы систематики.

2) Современная биологическая система.

30. Структура биосферы.

а) Понятие биосферы.

б) Границы биосферы.

в) Компоненты биосферы: живое, биогенное, биокосное и косное вещество.

г) Биомасса поверхности суши, Мирового океана, почвы.

Домашнее задание: повторить по конспекту.

Эти ресурсы необходимо рассматривать комплексно, так как они включают в себя:

Биологические ресурсы Мирового океана;

Минеральные ресурсы морского дна;

Энергетические ресурсы вод мирового океана;

Ресурсы морской воды.

Биологические ресурсы Мирового океана – это растения (водоросли) и животные (рыбы, млекопитающие, ракообразные, моллюски). Общий объем биомассы Мирового океана составляет 35 млрд. тонн, из которых 0,5 млрд. тонн приходится только на рыбу. Рыба составляет около 90% добываемых в океане промысловых объектов. Благодаря рыбе, моллюскам и ракообразным человечество на 20% обеспечивает себя белками животного происхождения. Биомасса океана используется также для получения высококалорийной кормовой муки для животноводства.

Более 90% общемирового улова рыбы и нерыбных объектов приходится на шельфовую зону. Наибольшая часть Мирового улова добывается в водах умеренных и высоких широт Северного полушария. Из океанов самый большой улов дает Тихий океан. Из морей Мирового океана самыми продуктивными являются Норвежское, Берингово, Охотское, Японское.

В последние годы в мире все более широкое распространение находит разведение некоторых видов организмов на искусственно созданных морских плантациях. Эти промыслы называют марикультурой. Развитие ее имеет место в Японии и Китае (устрицы-жемчужницы), США (устрицы и мидии), Франции и Австралии (устрицы), средиземноморских странах Европы (мидии). В России, в морях Дальнего Востока, выращивают морскую капусту (ламинарию) и морские гребешки.

Состояние запасов водных биологических ресурсов, эффективное управление ими приобретает все большее значение как для обеспечения населения высококачественными пищевыми продуктами, так и для снабжения сырьем многих отраслей промышленности и сельского хозяйства (в частности, птицеводства). Имеющаяся информация свидетельствует о возрастающей нагрузке на Мировой океан. При этом из-за сильного загрязнения резко снизилась биологическая продуктивность Мирового океана.В 198…. гг. ведущие ученые прогнозировали, что к 2025 г. мировая продукция рыболовства достигнет 230 – 250 млн т, в том числе за счет аквакультуры – 60 – 70 млн т. В 1990 гг. ситуация изменилась: прогнозы морских уловов на 2025 г. снизились до 125-130 млн т, в то время как прогнозы объема производства рыбопродукции за счет аквакультуры возросли до 80 – 90 млн т. При этом считается очевидным, что темпы прироста народонаселения Земли превысят темпы прироста рыбопродукции. Отмечая необходимость обеспечения продовольствием настоящего и будущих поколений, следует признать значительный вклад рыболовства в доход, благосостояние и продовольственную безопасность всех наций и его особую важность для некоторых стран с низким уровнем доходов и дефицитом продовольствия. Осознавая ответственность ныне живущего населения за сохранение биологических ресурсов для будущих поколений, в декабре 1995 г. в Японии 95 государств, в том числе Россия, приняли Киотскую декларацию и План действий по устойчивому вкладу рыболовства в продовольственную безопасность. Было предложено основывать политику, стратегию и использование ресурсов для устойчивого развития рыболовного сектора, исходя из следующих основных положений:

Сохранение экологических систем;

Использование достоверных научных данных;

Повышение социально-экономического благосостояния;

Справедливость распределения ресурсов внутри и между поколениями.

Российская Федерация наряду с другими странами взяла на себя обязательства руководствоваться при развитии национальной стратегии рыболовства следующими конкретными принципами:

Признание и оценка важной роли, которую морское рыболовство, рыболовство во внутренних водоемах и аквакультура играет в продовольственной безопасности мира как через обеспечение продовольствием, так и через экономическое благосостояние;

Эффективное применение положений Конвенции ООН по морскому праву, Соглашения ООН по трансграничным рыбным запасам и запасам далеко мигрирующих рыб, Соглашения о содействии выполнению международных мер по сохранению и управлению рыболовными судами в открытом море и Кодекса ответственного рыболовства ФАО, а также приведение в соответствие своего национального законодательства с этими документами;

Развитие и укрепление научных исследований как фундаментальных основ устойчивого развития рыболовства и аквакультуры для обеспечения продовольственной безопасности, а также обеспечение научного и технического содействия и поддержки странам, имеющим незначительные научно-исследовательские возможности;

Оценка продуктивности запасов в водах под национальной юрисдикцией, как внутренних, так и морских, приведение промысловых мощностей в этих водах к уровню, сопоставимому с долговременной продуктивностью запасов, и своевременное принятие надлежащих мер для восстановления переловленных, запасов до устойчивого состояния, а также сотрудничества в соответствии с международным правом для принятия аналогичных мер в отношении запасов, встречающихся в открытом море;

Сохранение и устойчивое использование биологического разнообразия и его компонентов в водной среде и, в частности, предотвращение практики, ведущей к необратимым изменениям, таким, как уничтожение видов генетической эрозией или крупномасштабное разрушение среды обитания;

Содействие развитию марикультуры и аквакультуры в прибрежных морских и внутренних водах путем установления надлежащих правовых механизмов, координации использования земли и воды с другими видами деятельности, использования наилучшего и наиболее подходящего генетического материала в соответствии с требованиями по сохранению и устойчивому использованию внешней среды и сохранения биологического разнообразия, применения оценки последствий социального плана и влияния на окружающую среду.

Минеральные ресурсы Мирового океана – это твердые, жидкие и газообразные полезные ископаемые. Различают ресурсы шельфовой зоны и ресурсы глубоководного дна.

Первое место среди ресурсов шельфовой зоны принадлежит нефти и газу. Основные районы нефтедобычи – Персидский, Мексиканский, Гвинейский заливы, берега Венесуэлы, Северное море. Шельфовые нефтегазоносные районы есть в Беринговом, Охотском морях. Общее число нефтегазоносных бассейнов, разведанных в осадочной толще океанического шельфа, превышает 30. Большинство из них представляют собой продолжение бассейнов суши. Общие запасы нефти на шельфе оцениваются в 120 – 150 млрд. тонн.

Среди твердых полезных ископаемых шельфовой зоны можно выделить три группы:

      коренные месторождения руд железа, меди, никеля, олова, ртути и др.;

      прибрежно-морские россыпи;

      отложения фосфоритов в более глубоких частях шельфа и на материковом склоне.

Коренные месторождения руд металлов разрабатываются с помощью выработок, прокладываемых с берега или с островов. Иногда такие выработки уходят под дно моря на расстояние 10-20 км от берега. Из подводных недр добывают железную руду (у берегов острова Кюсю, в Гудзоновом заливе), каменный уголь (Япония, Великобритания), серу (США).

В прибрежно-морских россыпях содержатся цирконий, золото, платина, алмазы. Примерами таких разработок может служить добыча алмазов – у побережья Намибии; циркония и золота – у побережья США; янтаря – на берегах Балтийского моря.

Отложения фосфоритов разведаны прежде всего в Тихом океане, но пока промышленная их разработка нигде не ведется.

Главное богатство глубоководного ложа океана – железомарганцевые конкреции. Установлено, что конкреции встречаются в верхней пленке глубоководных осадков на глубине от 1 до 3 км, а на глубине более 4 км нередко образуют сплошной слой. Общие запасы конкреций исчисляются триллионами тонн. Помимо железа и марганца, они содержат никель, кобальт, медь, титан, молибден и другие элементы (более 20). Наибольшее количество конкреций обнаружено в центральной и восточной частях Тихого океана. В США, Японии и ФРГ уже разработаны технологии добычи конкреций со дна океана.

Кроме железо - марганцевых конкреций на дне океана встречаются и железо – марганцевые корки, покрывающие породы в областях срединно-океанических хребтов на глубине 1 – 3 км. Они содержат больше марганца, чем конкреции.

Энергетические ресурсы – принципиально доступная механическая и тепловая энергия Мирового океана, из которой используется главным образом приливная энергия . Приливные электростанции имеются во Франции в устье реки Ране, в России Кислогубская ПЭС на Кольском полуострове. Разрабатываются и частично реализуются проекты использования энергии волн и течений . Наибольшими ресурсами приливной энергии обладают Франция, Канада, Великобритания, Австралия, Аргентина, США, Россия. Высота прилива в этих странах достигает 10-15 м.

Морская вода также является ресурсом Мирового океана. Она содержит около 75 химических элементов. Из вод морей извлекают около … /…. добываемой в мире поваренной соли, 60% магния, 90% брома и калия. Воды морей в ряде стран используются для промышленного опреснения. Крупнейшие производители пресной воды – Кувейт, США, Япония.

При интенсивном использовании ресурсов Мирового океана происходит его загрязнение в результате сброса в реки и моря промышленных, сельскохозяйственных, бытовых и других отходов, судоходства, добычи полезных ископаемых. Особую угрозу представляет нефтяное загрязнение и захоронение в глубоководных частях океана токсичных веществ и радиоактивных отходов. Проблемы Мирового океана – это проблемы будущего человеческой цивилизации. Они требуют согласованных международных мер по координации использования его ресурсов и предотвращению дальнейшего загрязнения.

Минимальной биомассой обладают глубоководные котловины и глубоководные желоба. Из-за затрудненного водообмена здесь возникают застойные области, а питательные вещества содержатся в минимальных количествах.

От экваториальной зоны к полярным видовое разнообразие жизни уменьшается в 20 - 40 раз, но общая биомасса возрастает примерно в 50 раз. Более холодноводные организмы плодовитее, жирнее. На два-три вида приходится 80 - 90% биомассы планктона.

Тропические части Мирового океана малопродуктивны, хотя в планктоне и в бентосе видовое разнообразие очень велико. В масштабе планеты тропическая зона Мирового океана скорее всего представляет собой музей, а не кормообильный сектор.

Меридиональная симметрия относительно плоскости, проходящей через середины океанов, проявляется в том, что центральные зоны океанов заняты особым пелагическим биоценозом; к западу и к востоку по направлению к берегам расположены неритические зоны сгущения жизни. Здесь биомасса планктона в сотни, а бентоса в тысячи раз больше, чем в центральной зоне. Меридиональная симметрия нарушается действием течений и «апвелинга».

Потенциал мирового океана

Мировой океан - самый обширный биотоп планеты. Однако по видовому разнообразию он значительно уступает суше: лишь 180 тысяч видов животных и около 20 тысяч видов растений. Следует помнить, что из 66 классов свободно живущих организмов только четыре класса позвоночных (амфибии, рептилии, птицы и ) и четыре класса членистоногих (первичнотрахейные, паукообразные, многоножки и насекомые) развились вне моря.

Общая биомасса организмов Мирового океана достигает 36 миллиардов тонн, а первичная продуктивность (в основном за счет одноклеточных водорослей) - сотни миллиардов тонн органического вещества в год.

Дефицит продуктов: питания заставляет обратиться к Мировому океану. В последние 20 лет значительно увеличился рыболовный флот и усовершенствовались средства лова. Приросты улова достигали 1,5 миллиона тонн в год. В 2009 году улов превысил 70 миллионов тонн. Было извлечено (в миллионах тонн): морской рыбы 53,37, проходной рыбы 3,1, пресноводной рыбы 8,79, моллюсков 3,22, ракообразных 1,68, прочих животных 0,12, растений 0,92.

В 2008 году только анчоуса было выловлено 13 миллионов тонн. Однако в последующие годы уловы анчоуса снизились до 3-4 миллионов тонн в год. Мировой улов в 2010 году уже составил 59,3 миллиона тонн, в том числе рыбы 52,3 миллиона тонн. Из общей добычи 1975 года выловлено (в миллионах тонн): из 30,4, 25,8, 3,1. Из северных морей выловлена основная часть продукции 2010 года - 36,5 миллиона тонн. Резко повысился улов в Атлантике, здесь появились японские тунцеловы. Пришло время регулировать масштабы лова. Первый шаг уже сделан - введена двухсотмильная территориальная зона.

Считается, что возросшая мощь технических средств лова угрожает биоресурсам Мирового океана. Действительно, придонными тралами портятся рыбьи пастбища. Более интенсивно вырабатываются и прибрежные зоны, на долю которых приходится 90 процентов улова. Однако тревога о том, что рубеж естественной продуктивности Мирового океана достигнут, беспочвенна. Со второй половины XX века ежегодно добывалось не менее 21 миллиона тонн рыбы и других продуктов, что тогда считалось биологическим пределом. Однако, судя по расчетам, из Мирового океана можно извлекать до 100 миллионов тонн.

Тем не менее следует помнить, что к 2030 году даже при освоении пелагических зон проблема снабжения продуктами моря не будет решена. К тому же часть пелагических рыб (нототения, мерланг, путассу, макрурус, аргентина, хек, зубан, ледяная рыба, угольная рыба) уже может быть включена в «Красную книгу». Видимо, необходимо переориентироваться в области питания, шире внедрять в продукты биомассу криля, запасы которого в антарктических водах огромны. Опыт такого рода имеется: в продаже креветочное масло, паста «Океан», сыр «Коралл» с существенной добавкой криля. И, конечно, нужно активнее переходить на «оседлое» производство рыбопродуктов, от лова к океаническому хозяйству. В Японии давно выращивают на морских фермах рыбу и моллюски (свыше 500 тысяч тонн в год), а в США в год 350 тысяч тонн моллюсков. В России ведется плановое хозяйство на морских фермах Приморья, Балтийского, Черного и Азовского морей. Ставятся опыты в бухте Дальние Зеленцы на Баренцевом море.

Особенно высокопродуктивными могут оказаться внутренние моря. Так, в России самой природой предназначено для регулируемого выращивания рыбы Белое море. Здесь поставлен опыт заводского разведения семги и горбуши -ценных проходных рыб. Возможности только этим не исчерпаны.

Фитопланктон, связывая в процессе фотосинтеза CO 2 и образуя органическое вещество, дает начало всем пищевым цепям в океане. Анализ множества данных о количестве фитопланктона в разных районах Мирового океана (с конца XIX века рассчитанных по имеющимся оценкам прозрачности, а с начала 1980-х годов получаемых дистанционно, с космических аппаратов) показывает, что биомасса его за последнее столетие снижалась со скоростью около 1% в год. Наиболее заметное снижение отмечено для центральных олиготрофных районов океана. Хотя эти районы отличаются очень низкой продуктивностью, они занимают огромную площадь, и потому суммарный их вклад в продукцию и в биомассу фитопланктона океана оказывается весьма существенным. Наиболее вероятная причина снижения биомассы - повышение температуры поверхностного слоя океана, ведущее к уменьшению глубины перемешивания и сокращению поступления из нижележащих слоев элементов минерального питания.

Примерно половина всей первичной продукции нашей планеты (то есть органического вещества, образуемого зелеными растениями и другими фотосинтезирующими организмами) приходится на океан. Основные продуценты океана - это взвешенные в верхних слоях водной толщи микроскопические водоросли и цианобактерии (то, что в совокупности и называют фитопланктоном). Широкомасштабное количественное изучение продукции и биомассы фитопланктона Мирового океана развернулось в 1960-70-х годах. Исследователи (в том числе из Института океанологии Академии наук СССР) опирались тогда на метод, в основе которого - поглощение фитопланктоном радиоактивного изотопа углерода 14 C. Изотопом была помечена двуокись углерода CO 2 , добавляемая в пробы воды с фитопланктоном, поднятые на борт судна. В результате этих работ были построены карты распределения фитопланктона по всей акватории Мирового океана (см., например: Koblentz-Mishke et al., 1970). В центральных, занимающих большую площадь, областях океана биомасса фитопланктона и его продукция очень низкие. Высокие значения биомассы и продукции приурочены к прибрежьям и районам апвеллингов (см.: Upwelling), где к поверхности поднимаются глубинные воды, богатые элементами минерального питания. Прежде всего это фосфор и азот, недостаток которых как раз и ограничивает рост фитопланктона на большей части океанической акватории.

Новый этап в количественном изучении распределения фитопланктона Мирового океана начался в самом конце 1970-х годов, после появления дистанционных (со спутников) методов зондирования поверхностных вод и определения содержания в них хлорофилла. Хотя до аппаратов, находящихся у верхней границе атмосферы, доходит не более 10% фотонов света, который отражается от воды и несет информацию об ее цветности, этого достаточно, чтобы рассчитать количество хлорофилла, а соответственно, и биомассу фитопланктона (рис. 1). По величинам биомассы можно судить и о продукции фитопланктона, что проверено в ходе специальных исследований, сопоставляющих спутниковые данные с результатами оценок продукции, полученных экспериментально in situ на научно-исследовательских судах. Конечно, разные аппараты дают несколько разные данные, но общая картина пространственного распределения фитопланктона и его динамики (сезонной и межгодовой) получается очень подробной. Достаточно сказать, что аппарат Sea WiFS (Sea-viewing Wide Field-of-view Sensor - Широкополосный обозреватель моря) сканирует весь мировой океана за два дня.

Накопленный за последние 30 лет огромный массив данных позволил выявить определенные периодические колебания биомассы фитопланктона, в частности связанные с Эль-Ниньо , или, точнее, с «Южной Осцилляцией» (El Niño-Southern Oscillation). Анализируя эти материалы, исследователи высказывали предположение о существовании и более долговременных изменений биомассы фитопланктона, но их трудно было выявить из-за нехватки данных за период, предшествующий спутниковым измерениям. Попытку хотя бы частично разрешить эту задачу предприняли недавно специалисты из канадского университета Далхаузи в Галифаксе (Dalhousie University , Halifax, Nova Scotia). Судить о биомассе фитопланктона 50 и даже 100 лет назад можно по оценкам прозрачности - величины, регулярно измеряемой в научно-исследовательских экспедициях начиная с конца XIX века.

Инструмент для измерения прозрачности воды, крайне простой, но оказавшийся очень полезным, был придуман еще 1865 году итальянским астрономом (а заодно и священником) Анджело Секки (Pietro Angelo Secchi), которому было поручено составить карту прозрачности Средиземного моря для папского флота. Прибор, получивший название «диск Секки» (см. рис. 2), представляет собой белый металлический диск диаметром 20 или 30 см, который опускается в воду на размеченной веревке. Глубина, на которой наблюдатель перестает видеть диск, - это и есть прозрачность по Секки. Поскольку основная часть взвеси, влияющая на прозрачность воды, приходится на фитопланктон, то любые изменения величины прозрачности. как правило, хорошо отражают изменения количества фитопланктона.

Опираясь на стандартизированные оценки прозрачности, доступные с 1899 года, и на результаты недавнего сопоставления величины прозрачности с концентрацией хлорофилла, исследователи получили, во-первых, картину распределения биомассы фитопланктона в Мировом океане (рис. 3), а во-вторых, изменение биомассы фитопланктона за столетний период (рис. 4). Всего в их распоряжении были результаты более 455 тысяч измерений, охватывающих период с 1899-го по 2008 год. При этом данные, относящиеся непосредственно к прибрежной зоне (менее 1 км от берега и на глубинах менее 25 м), сознательно не включались в выборку, так как в таких местах очень заметно влияние стоков с берега. Больше всего измерений было сделано уже после 1930 года в северных областях Атлантического и Тихого океанов. Основной вывод, к которому приходят авторы, - это постепенное снижение общей биомассы фитопланктона за последнее столетие со средней скоростью около 1% в год.

Для оценки локальных тенденций вся акватория Мирового океана была разбита решеткой с ячейками размером 10° × 10°, и все величины рассчитывались как средние на ячейку. Снижение биомассы фитопланктона было отмечено в 59% ячеек, для которых имелись достаточно надежные данные. Больше всего таких ячеек в высоких широтах (более 60° по широте). Однако для некоторых районов океана отмечено повышение биомассы - в частности, в восточной части Тихого океана, а также в северных и южных районах Индийского океана. Центральные олиготрофные области океанов фактически расширили занимаемые акватории, а в этих областях, несмотря на низкую продуктивность, образуется сейчас в целом около 75% всей первичной продукции Мирового океана.

Чтобы представить себе изменения на уровне крупных регионов, вся акватория океана была разбита на 10 областей (рис. 5): Арктику, Северную, Экваториальную и Южную Атлантику, северную и южную части Индийского океана, Северную, Экваториальную и Южную Пацифику, а также Южный океан. Анализ усредненных данных по этим крупным регионам показал, что достоверное увеличение отмечено только для южной части Индийского океана и статистически недостоверное - для северной части Индийского океана. Для всех остальных регионов отмечено значимое сокращение биомассы фитопланктона.

Обсуждая возможные причины наблюдаемых изменений, авторы обращают внимание прежде всего на повышение температуры поверхностного слоя водной толщи. Оно охватило почти весь океан и привело к уменьшению толщины перемешиваемого слоя. Соответственно, сокращается приток элементов минерального питания (прежде всего фосфатов и нитратов) из нижележащих слоев. Однако авторы признают, что подобное объяснение не подходит для высоких широт. Там потепление верхнего слоя должно способствовать повышению, а не понижению продукции и биомассы фитопланктона. Очевидно, что механизмы, определяющие крупномасштабные изменения биомассы фитопланктона, нуждаются в дополнительном изучении.

Понравилась статья? Поделиться с друзьями: