Решение неравенств высших степеней схему горнера примеры. Уравнения в высшей математике.Рациональные корни многочленов

С помощью данной математической программы вы можете поделить многочлены столбиком.
Программа деления многочлена на многочлен не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс решения для того чтобы проконтролировать знания по математике и/или алгебре.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Если вам нужно или упростить многочлен или умножить многочлены , то для этого у нас есть отдельная программа Упрощение (умножение) многочлена

Первый многочлен (делимое - что делим):

Второй многочлен (делитель - на что делим):

Разделить многочлены

Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу.

У вас в браузере отключено выполнение JavaScript.
Чтобы решение появилось нужно включить JavaScript.
Вот инструкции, как включить JavaScript в вашем браузере .

Т.к. желающих решить задачу очень много, ваш запрос поставлен в очередь.
Через несколько секунд решение появится ниже.
Пожалуйста подождите сек...


Если вы заметили ошибку в решении , то об этом вы можете написать в Форме обратной связи .
Не забудте указать какую задачу вы решаете и что вводите в поля .



Наши игры, головоломки, эмуляторы:

Немного теории.

Деление многочлена на многочлен (двучлен) столбиком (уголком)

В алгебре деление многочленов столбиком (уголком) - алгоритм деления многочлена f(x) на многочлен (двучлен) g(x), степень которого меньше или равна степени многочлена f(x).

Алгоритм деления многочлена на многочлен представляет собой обобщенную форму деления чисел столбиком, легко реализуемую вручную.

Для любых многочленов \(f(x) \) и \(g(x) \), \(g(x) \neq 0 \), существуют единственные полиномы \(q(x) \) и \(r(x) \), такие что
\(\frac{f(x)}{g(x)} = q(x)+\frac{r(x)}{g(x)} \)
причем \(r(x) \) имеет более низкую степень, чем \(g(x) \).

Целью алгоритма деления многочленов в столбик (уголком) является нахождение частного \(q(x) \) и остатка \(r(x) \) для заданных делимого \(f(x) \) и ненулевого делителя \(g(x) \)

Пример

Разделим один многочлен на другой многочлен (двучлен) столбиком (уголком):
\(\large \frac{x^3-12x^2-42}{x-3} \)

Частное и остаток от деления данных многочленов могут быть найдены в ходе выполнения следующих шагов:
1. Делим первый элемент делимого на старший элемент делителя, помещаем результат под чертой \((x^3/x = x^2) \)

\(x \) \(-3 \)
\(x^2 \)

3. Вычитаем полученный после умножения многочлен из делимого, записываем результат под чертой \((x^3-12x^2+0x-42-(x^3-3x^2)=-9x^2+0x-42) \)

\(x^3 \) \(-12x^2 \) \(+0x \) \(-42 \)
\(x^3 \) \(-3x^2 \)
\(-9x^2 \) \(+0x \) \(-42 \)
\(x \) \(-3 \)
\(x^2 \)

4. Повторяем предыдущие 3 шага, используя в качестве делимого многочлен, записанный под чертой.

\(x^3 \) \(-12x^2 \) \(+0x \) \(-42 \)
\(x^3 \) \(-3x^2 \)
\(-9x^2 \) \(+0x \) \(-42 \)
\(-9x^2 \) \(+27x \)
\(-27x \) \(-42 \)
\(x \) \(-3 \)
\(x^2 \) \(-9x \)

5. Повторяем шаг 4.

\(x^3 \) \(-12x^2 \) \(+0x \) \(-42 \)
\(x^3 \) \(-3x^2 \)
\(-9x^2 \) \(+0x \) \(-42 \)
\(-9x^2 \) \(+27x \)
\(-27x \) \(-42 \)
\(-27x \) \(+81 \)
\(-123 \)
\(x \) \(-3 \)
\(x^2 \) \(-9x \) \(-27 \)

6. Конец алгоритма.
Таким образом, многочлен \(q(x)=x^2-9x-27 \) - частное деления многочленов, а \(r(x)=-123 \) - остаток от деления многочленов.

Результат деления многочленов можно записать в виде двух равенств:
\(x^3-12x^2-42 = (x-3)(x^2-9x-27)-123 \)
или
\(\large{\frac{x^3-12x^2-42}{x-3}} = x^2-9x-27 + \large{\frac{-123}{x-3}} \)

Цели урока:

  • научить учащихся решать уравнения высших степеней используя схему Горнера;
  • воспитывать умение работать в парах;
  • создать в совокупности с основными разделами курса базу для развития способностей учащихся;
  • помочь ученику оценить свой потенциал, развивать интерес к математике, умение мыслить, высказываться по теме.

Оборудование: карточки для работы в группах, плакат со схемой Горнера.

Метод обучения: лекция, рассказ, объяснение, выполнение тренировочных упражнений.

Форма контроля: проверка задач самостоятельного решения, самостоятельная работа.

Ход урока

1. Организационный момент

2. Актуализация знаний учащихся

Какая теорема позволяет определить, является ли число корнем данного уравнения (сформулировать теорему)?

Теорема Безу. Остаток от деления многочлена Р(х) на двучлен х-с равен Р(с), число с называют корнем многочлена Р(х), если Р(с)=0. Теорема позволяет, не выполняя операцию деления, определить, является ли данное число корнем многочлена.

Какие утверждения облегчают поиск корней?

а) Если старший коэффициент многочлена равен единице, то корни многочлена следует искать среди делителей свободного члена.

б) Если сумма коэффициентов многочлена равна 0, то один из корней равен 1.

в)Если сумма коэффициентов стоящих на четных местах, равна сумме коэффициентов, стоящих на нечетных местах, то один из корней равен -1.

г) Если все коэффициенты положительны, то корнями многочлена являются отрицательные числа.

д) Многочлен нечетной степени имеет хотя бы один действительный корень.

3. Изучение нового материала

При решении целых алгебраических уравнений приходиться находить значения корней многочленов. Эту операцию можно существенно упростить, если проводить вычисления по специальному алгоритму, называемому схемой Горнера. Эта схема названа в честь английского ученого Уильяма Джорджа Горнера. Схема Горнера это алгоритм для вычисления частного и остатка от деления многочлена Р(х) на х-с. Кратко, как он устроен.

Пусть дан произвольный многочлен Р(х)=а 0 х n + а 1 х n-1 + …+ а n-1 х+ а n . Деление этого многочлена на х-с – это представление его в виде Р(х)=(х-с)g(х) + r(х). Частное g(х)=в 0 х n-1 + в n х n-2 +…+в n-2 х + в n-1 , где в 0 =а 0 , в n =св n-1 +а n , n=1,2,3,…n-1. Остаток r(х)= св n-1 +а n . Этот метод вычисления и называется схемой Горнера. Слово « схема» в названии алгоритма связана с тем, что обычно его выполнение оформляют следующим образом. Сначала рисуют таблицу 2(n+2). В левой нижней клетке записывают число с, а в верхней строке коэффициенты многочлена Р(х). При этом левую верхнюю клетку оставляют пустой.

в 0 =а 0

в 1 =св 1 +а 1

в 2 =св 1 + а 2

в n-1 =св n-2 +а n-1

r(х)=f(с)=св n-1 +а n

Число, которое после выполнения алгоритма оказывается записанным в правой нижней клетке, и есть остаток от деления многочлена Р(х) на х-с. Другие числа в 0 , в 1 , в 2 ,… нижней строки являются коэффициентами частного.

Например: Разделить многочлен Р(х)= х 3 -2х+3 на х-2.

Получаем, что х 3 -2х+3=(х-2) (х 2 +2х+2) + 7.

4. Закрепление изученного материала

Пример 1: Разложите на множители с целыми коэффициентами многочлен Р(х)=2х4-7х 3 -3х 2 +5х-1.

Ищем целые корни среди делителей свободного члена -1: 1; -1. Составим таблицу:

X = -1 – корень

Р(х)= (х+1) (2х 3 -9х 2 +6х -1)

Проверим 1/2.

Х=1/2 - корень

Следовательно, многочлен Р(х) можно представить в виде

Р(х)= (х+1) (х-1/2) (х 2 -8х +2) = (х+1) (2х -1) (х 2 - 4х +1)

Пример 2: Решить уравнение 2х 4 - 5х 3 + 5х 2 - 2 = 0

Так как сумма коэффициентов многочлена, записанного в левой части уравнения, равна нулю, то один из корней 1. Воспользуемся схемой Горнера:

Х=1 - корень

Получаем Р(х)=(х-1) (2х 3 -3х 2 =2х +2). Будем искать корни среди делителей свободного члена 2.

Выяснили, что целых корней больше нет. Проверим 1/2; -1/2.

Х= -1/2 - корень

Ответ: 1; -1/2.

Пример 3: Решить уравнение 5х 4 – 3х 3 – 4х 2 -3х+ 5 = 0.

Корни данного уравнения будем искать среди делителей свободного члена 5: 1;-1;5;-5. х=1 - корень уравнения, так как сумма коэффициентов равна нулю. Воспользуемся схемой Горнера:

уравнение представим в виде произведения трех множителей: (х-1) (х-1) (5х 2 -7х + 5)=0. Решая квадратное уравнение 5х 2 -7х+5=0, получили Д=49-100=-51, корней нет.

Карточка 1

  1. Разложите на множители многочлен: х 4 +3х 3 -5х 2 -6х-8
  2. Решите уравнение: 27х 3 -15х 2 +5х-1=0

Карточка 2

  1. Разложите на множители многочлен: х 4 -х 3 -7х 2 +13х-6
  2. Решите уравнение: х 4 +2х 3 -13х 2 -38х-24=0

Карточка 3

  1. Разложите на множители: 2х 3 -21х 2 +37х+24
  2. Решите уравнение: х 3 -2х 2 +4х-8=0

Карточка 4

  1. Разложите на множители: 5х 3 -46х 2 +79х-14
  2. Решите уравнение: х 4 +5х 3 +5х 2 -5х-6=0

5. Подведение итогов

Проверка знаний при решении в парах осуществляется на уроке путем узнавания способа действия и названия ответа.

Домашнее задание:

Решите уравнения:

а) х 4 -3х 3 +4х 2 -3х+1=0

б) 5х 4 -36х 3 +62х 2 -36х+5=0

в) х 4 +х 3 +х+1=4х 2

г) х 4 +2х 3 -х-2=0

Литература

  1. Н.Я. Виленкин и др., Алгебра и начала анализа 10 класс (углубленное изучение математики): Просвещение, 2005.
  2. У.И. Сахарчук, Л.С. Сагателова, Решение уравнений высших степеней: Волгоград, 2007.
  3. С.Б. Гашков, Системы счисления и их применение.

Слайд 3

Горнер Вильямc Джордж (1786-22.9.1837)-английский математик. Родился в Бристоле. Учился и работал там же, затем в школах Бата. Основные труды по алгебре. В 1819г. опубликовал способ приближенного вычисления вещественных корней многочлена, который называется теперь способом Руффини-Горнера (этот способ был известен китайцам еще в XIII в.) Именем Горнера названа схема деления многочлена на двучлен х-а.

Слайд 4

СХЕМА ГОРНЕРА

Способ деления многочлена n-й степени на линейный двучленх - а, основанный на том, что коэффициенты неполного частного и остатокr связаны с коэффициентами делимого многочлена и с а формулами:

Слайд 5

Вычисления по схеме Горнера располагают в таблицу:

Пример 1. Разделить Неполное частное равно х3-х2+3х - 13 и остаток равен 42=f(-3).

Слайд 6

Основным преимуществом этого метода является компактность записи и возможность быстрого деления многочлена на двучлен. По сути, схема Горнера является другой формой записи метода группировки, хотя, в отличие от последнего, является совершенно ненаглядной. Ответ (разложение на множители) тут получается сам собой, и мы не видим самого процесса его получения. Мы не будем заниматься строгим обоснованием схемы Горнера, а лишь покажем, как она работает.

Слайд 7

Пример2.

Докажем, что многочлен Р(х)=х4-6х3+7х-392 делится на х-7,и найдем частное от деления. Решение. Используя схему Горнера, найдем Р(7): Отсюда получаем Р(7)=0, т.е. остаток при делении многочлена на х-7 равен нулю и, значит, многочлен Р(х) кратен (х-7).При этом числа во второй строке таблицы являются коэффициентами частного от деления Р(х) на (х-7), поэтому Р(х)=(х-7)(х3+х2+7х+56).

Слайд 8

Разложить на множители многочлен x3 – 5x2 – 2x + 16.

Данный многочлен имеет целые коэффициенты. Если целое число является корнем этого многочлена, то оно является делителем числа 16. Таким образом, если у данного многочлена есть целые корни, то это могут быть только числа ±1; ±2; ±4; ±8; ±16. Непосредственной проверкой убеждаемся, что число 2 является корнем этого многочлена, то есть x3 – 5x2 – 2x + 16 = (x – 2)Q(x), где Q(x) − многочлен второй степени

Слайд 9

Полученные числа 1, −3, −8 являются коэффициентами многочлена, который получается при делении исходного многочлена на x – 2. Значит, результат деления: 1 · x2 + (–3)x + (–8) = x2 – 3x – 8. Степень многочлена, полученного в результате деления, всегда на 1 меньше, чем степень исходного. Итак: x3 – 5x2 – 2x + 16 = (x – 2)(x2 – 3x – 8).

С айт «профессиональный репетитор по математике» продолжает цикл методических статей о преподавании. Я публикую описания методик своей работы с наиболее сложными и проблемным темами школьной программы. Данный материал будет полезен преподавателям и репетиторам по математике, работающим с учениками 8-11 классов как по обычной программе, так и по программе математических классов.

Репетитор по математике не всегда может объяснить материал, который неудачно изложен в учебнике. К сожалению, таких тем становится все больше и больше, и ошибки изложения вслед за авторами пособий совершаются в массовом порядке. Это относится не только к начинающим репетиторам по математики и репетиторам по совместительству (репетиторы — студенты и репетиторы ВУЗов), но и к опытным преподавателям, репетиторам — профессионалам, репетиторам со стажем и квалификацией. Талант грамотного корректора шероховатостей школьных учебников имеют далеко не все репетиторы математики. Не все также понимают, что эти коррекции (или дополнении) необходимы. Адаптацией материала для его качественного восприятия детьми занимаются единицы. К сожалению, ушло то время, когда преподаватели математики вместе методистами и авторами изданий в массовом порядке обсуждали каждую букву учебника. Раньше, прежде чем пустить учебник в школы, проводили серьезные анализы и исследования результатов обучения. Пришло время дилетантов, стремящихся сделать пособия универсальными, подгоняя их под стандарты сильных математических классов.

Гонка за увеличение количества информации приводит только к снижению качества ее усвоения и, как следствие снижению уровня реальных знаний по математике. Но на это никто не обращает внимание. И наши дети вынуждены уже в 8 классе изучать то, что мы с вами проходили в институте: теорию вероятности, решение уравнений высоких степеней и кое-что еще. Адаптация материала в книжках для его полноценного восприятия ребенком оставляет желать лучшего и репетитор по математике вынужден как-то с этим бороться.

Поговорим о методике преподавания такой специфической темы, как «деление уголком многочлена на многочлен», более известной во взрослой математике как «теорема Безу и схема Горнера». Еще каких-нибудь пару лет назад вопрос не стоял перед репетитором по математике так остро, ибо он не входил в основную школьную программу. Теперь уважаемые авторы учебника под редакцией Теляковского внесли изменения в последнее издание лучшего, на мой взгляд, учебника, и, окончательно испортив его, только добавили репетитору лишних забот. Преподаватели школ и классов, не имеющих статус математических, ориентируясь на нововведения авторов, стали чаще включать дополнительные параграфы в свои уроки, а любознательные дети, рассматривая красивые странички их учебника математики, все чаще спрашивают репетитора: «Что это за деление уголком? Мы будем это проходить? Как делить уголком?» От таких прямых вопросов уже не спрятаться. Репетитору придется что-то рассказывать ребенку.

А как? Наверное, я бы не стал описывать метод работы с темой, если бы в учебниках она грамотно преподносилась. У нас ведь как все происходит? Учебники нужно печатать и продавать. А для этого их надо регулярно обновлять. Преподаватели Вузов жалуются, что дети приходят к ним с пустыми головами, без знаний и навыков? Требования к математическим знаниям растут? Отлично! Давайте мы уберем некоторые упражнения, а вместо них вставим темы, которые изучаются по другим программам. Чем наш учебник хуже? Включим какие-нибудь дополнительные главы. Школьники не знают правило деления уголком? Это же элементарная математика. Надо сделать такой параграф необязательным, озаглавив его «для тех, кто хочет знать больше». Репетиторы против? А какое нам дело до репетиторов вообще? Методисты и преподаватели школ тоже против? Мы не будем усложнять материал и рассмотрим наиболее простую его часть.

И вот тут начинается. Простота темы и качество ее усвоения заключатся, прежде всего, в понимании ее логики, а не в том, чтобы согласно предписанию авторов учебника выполнить некий набор не понятно как связанных друг с другом операций. Иначе туман в голове школьника будет обеспечен. Если расчет авторов идет на относительно сильных учеников (но обучающихся по обычной программе), то не стоит подавать тему в командной форме. А что мы видим в учебнике? Дети, надо делить по такому правилу. Получите многочлен под уголком. Таким образом, первоначальный многочлен разложится на множители. Однако, понять, почему именно так подбираются слагаемые под уголком, почему их надо умножать на многочлен над уголком, а затем вычитать из текущего остатка — непонятно. И самое главное не понятно, почему подобранные одночлены надо в итоге сложить и почему получившиеся скобки будут разложением первоначального многочлена. Любой грамотный математик поставит жирный знак вопроса над теми объяснениями, которые даются в учебнике.

Я предлагаю вниманию репетиторов и преподавателей математики свое решение проблемы, которое практически делает для ученика очевидным все то, что изложено в учебнике. Фактически мы докажем теорему Безу: если число а — корень многочлена, то этот многочлен можно разложить на множитлей, один из который x-a, а второй получается из первоначального одним из трех способов: выделением линейного множителя через преобразования, делением уголком или по схеме Горнера. Именно с такой форомулировкой репетитору по математике будет легче работать.

Что такое методика преподавания? Прежде всего это четкий порядок в последовательности объяснений и примеров, на основе которых делаются математические выводы. Данная тема не исключение. Репетитору по математике очень важно познакомить ребенка с теоремой Безу до того, как будет выполняться деление уголком . Это очень важно! Добиться понимания лучше всего на конкретном примере. Возьмем какой-нибдуь многочлен с подобранным корнем и показажем технику его разложения на множители при помощи знакомого школьнику еще с 7 класса метода тождественных преобразований. При соответствующих сопроводительных пояснениях, акцентах и подсказках репетитора по математике вполне реально донести материал без каких-либо общих математических выкладок, произвольных коэффициентов и степеней.

Важный совет репетитору по математике — следовать инструкциям от начала и до конца и не менять эту последовательнотсь.

Итак, допустим, что перед нами многочлен . Если мы подставим вместо его икса число 1, то значение многочлена будет равно нулю. Следовательно х=1 — его корень. Попробуем разложить на два слагаемых так, чтобы одно из них было произведением линейного выражения и некоторого одночлена, а второе имело бы степень на единицу меньше, чем . То есть представим его в виде

Одночлен для красного поля подберем так, чтобы при при умножении его на старший член полностью совпадал со старшим членом первоначального многочлена. Если ученик не самый слабый, то он вполне способен будет назвать репетитору по математике искомое выражение: . Репетитору следует тут же предложить вставить его в красное поле и показать что будет получаться при их раскрытии. Лучше всего этот виртуальный временный многочлен подписать под стрелочками (под фотанчиком), выделяя его каким-нибудь цветом, например, синим. Это поможет подоборать слагаемое для красного поля, называемое остатком от выделения. Я бы советовал репетиторам именно здесь указывать на то, что этот остаток можно находить вычитанием. Выполняя такую операцию получим:

Репетитор по математике должен обратить внимание ученика на то, что подставляя единицу в данное равенство, мы гарантировано получим нуль в его левой части (так как 1 — корень первоначального многочлена), а в правой, очевидно, тоже обнулим первое слагаемое. Значит без всякой проверки можно сказать, что единица — корень «зеленого остатка».

Поступим с ним так же, как мы это сделали с первоначальным многочленом, выделяя из него такой же линейный множитель . Репетитор по математике рисует перед учеником две рамки и просит заполнить слева направо.

Ученик подбирает репетитору одночлен для красного поля так, чтобы он при умножении на старшее слагаемое линейного выражения давал старшее слагаемое раскладывающегося многочлена. Вписываем в касную рамку, тут же раскрываем скобку и выделяем синим цветом то выражение, которое надо вычесть их раскладывающегося. Выполняя эту операцию получаем

И, наконец, проделывая тоже самое с последним остатком

получим окончательно

Теперь вынесем выражение за скобку и перед нами окажется разложение первоначального многочлена на множители один из которых «икс минус подобранный корень».

Для того, чтобы ученику не казалось, что последний «зеленый остаток» случайно разложился на нужные множители, репетитор по математкие должен указать на важное свойство всех зеленых остатков — каждый из них имеет корень 1. Поскольку степени этих остатков убывают, то какая бы степень начального многочлена ни была нам дана, рано или поздно, мы получим линейный «зеленый остаток» с корнем 1, а следовательно он обязательно разложиться на произведение некоторого числа и выражения .

После такой подготовительной работы репетитору по математкие не составит труда объяснить ученику, что происходит при делении уголком. Это тот же самый процесс, только в более краткой и компактной форме, без знаков равно и без переписываний одних и тех же выделенных слагаемых. Многочлен из которого выделяется линейный множитель записываем слева от уголка, подбираемые красные одночлены собираем под уголом (теперь становится понятно, почему они должны складываться), для получения «синих многочленов» надо «красные» умножать на x-1, а затем вычитать из текущего выделяемого как это делается при обычном делении чисел в столбик (вот она аналогия с раннее изученным). Получаемые «зеленые остатки» подвергаются новому выделению и подбору «красных одночленов» . И так до получения нулевого «зеленого остатка». Самое главное, что ученику становится понятна дальнейшая судьба записанных многочленов над и под уголком. Очевидно, это скобки, произведение которых равно первоначальному многочлену.

Следующий этап работы репетитора по математике — формулирование теоремы Безу. Cобственно ее формулировка при таком подходе репетитора становится очевидной: если число а — корень многочлена, то его можно разложить на множители, один из которых , а другой получается из первоначального одним из трех способов:

  • непосредственным разложением (аналогом метода группировки)
  • делением уголком (в столбик)
  • через схему Горнера

Надо сказать, что схему горнера показывают ученикам далеко не все репетиторы математики и не все школьные преподаватели (к счастью для самих репетиторов) заходят на уроках так глубоко в тему. Однако, для учащегося математического класса я не вижу никаких оснований для остановки на делении в столбик. Более того, самый удобный и быстрый прием разложения основан именно на схеме Горнера. Для того, чтобы объяснить ребенку откуда она берется достаточно проследить на примере деления уголком появление старших коэффициентов у зеленых остатках. Становится ясно, что старший коэффициент начального многочлена сносится в коэффициент первого «красного одночлена», а дальше от второго коэффициента текущего верхнего многочлена вычитается результат умножения текущего коэффициента «красного одночлена» на . Поэтому можно прибавлять результат умножения на . После акцентирования внимания ученика на специфике действий с коэффициентами репетитор по математике может показать как обычно эти действия выполняют без записи самих переменных. Для этого удобно корень и коэффициенты первоначального многочлена по старшинству занести в такую таблицу:

Если в многочлене пропущена какая-нибудь степень, то в таблицу принудительно вносится ее нулевой коэффициент. В нижнюю строчку поочередно вписываются коэффициенты «красных многочленов» по правилу «крючка»:

Корень умножается на последний снесенный «красный коэффициент», прибавляется к следующему коэффициенту верхней строки и результат сносится в нижнюю строчку. В последней колонке гарантированно получим старший коэффициент последнего «зеленого остатка», то есть нуль. После завершения процесса, числа, зажатые между подобранным корнем и нулевым остатком оказываются коээффициентами второго (нелинейного) множителя.

Поскольку корень а дает в конце нижней строки нуль, то схему Горнера можно использовать для проверки чисел на звание корень многочлена. Если специальная теорема о подборе рационального корня. Все кандидаты на это звание, полученные с ее помощью, просто вставляются по очереди слева в схему Горнера. Как только мы получим нуль, тестируемое число будет корнем, и одновременно его строчке получим коэффициенты разложения первоначального многочлена на множители. Очень удобно.

В завершение хотелось бы отметить, что для аккуратного ввдения схемы Горнера, а также для практического закрепления темы, репетитор по математике должен иметь в своем распоряжении достаточное количество часов. Репетитору, работающему с режимом «раз в неделю» не стоит заниматься делением уголком. На Егэ по математике и на ГИА по математике вряд ли в первой части когда-нибудь встретится уравнение третьей степени, решаемое такими средствами. Если репетитор готовит ребенка экзамену по математике в МГУ — изучение темы становится обязательным. Очень уж любят преподаватели ВУЗов, не в пример составителям ЕГЭ, проверить глубину знаний абитуриента.

Колпаков Александр Николаевич, репетитор по математике Москва, Строгино

И т.д. носит общеобразовательный характер и имеет большое значение для изучения ВСЕГО курса высшей математики. Сегодня мы повторим «школьные» уравнения, но не просто «школьные» – а те из них, которые повсеместно встречаются в различных задачах вышмата. Как обычно, повествование пойдёт в прикладном ключе, т.е. я не буду заострять внимание на определениях, классификациях, а поделюсь с вами именно личным опытом решения. Информация предназначена, прежде всего, для начинающих, но и более подготовленные читатели тоже найдут для себя немало интересных моментов. И, конечно же, будет новый материал, выходящий за рамки средней школы.

Итак, уравнение…. Многие с содроганием вспоминают это слово. Чего только стОят «навороченные» уравнения с корнями... …забудьте о них! Потому что дальше вам будут встречаться самые безобидные «представители» этого вида. Или занудные тригонометрические уравнения с десятками методов решения. Если честно, я и сам их не особо любил…. Без паники! – далее вас ожидают преимущественно «одуванчики» с очевидным решением в 1-2 шага. Хотя и «репейник», безусловно, цепляется – здесь нужно быть объективным.

Как ни странно, в высшей математике гораздо чаще приходится иметь дело с совсем примитивными уравнениями наподобие линейного уравнения .

Что значит решить это уравнение? Это значит – найти ТАКОЕ значение «икс» (корень), которое обращает его в верное равенство. Перебросим «тройку» направо со сменой знака:

и сбросим «двойку» в правую часть (или, то же самое – умножим обе части на ) :

Для проверки подставим завоёванный трофей в исходное уравнение :

Получено верное равенство, значит, найденное значение действительно является корнем данного уравнения. Или, как ещё говорят, удовлетворяет данному уравнению.

Обратите внимание, что корень можно записать и в виде десятичной дроби:
И постарайтесь не придерживаться этого скверного стиля! Причину я повторял неоднократно, в частности, на первом же уроке по высшей алгебре .

Кстати, уравнение можно решить и «по-арабски»:

И что самое интересное – данная запись полностью легальна! Но если Вы не преподаватель, то так лучше не делать, ибо оригинальность здесь наказуема =)

А теперь немного о

графическом методе решения

Уравнение имеет вид и его корень – есть «иксовая» координата точки пересечения графика линейной функции с графиком линейной функции (осью абсцисс) :

Казалось бы, пример настолько элементарен, что разбирать тут больше нечего, однако из него можно «выжать» ещё один неожиданный нюанс: представим то же самое уравнение в виде и построим графики функций :

При этом, пожалуйста, не путайте два понятия : уравнение – это уравнение, а функция – это функция! Функции лишь помогают найти корни уравнения. Коих может быть два, три, четыре и даже бесконечно много. Ближайшим примером в этом смысле является всем известно квадратное уравнение , алгоритм решения которого удостоился отдельного пункта «горячих» школьных формул . И это не случайно! Если вы умеете решать квадратное уравнение и знаете теорему Пифагора , то, можно сказать, «пол высшей математики уже в кармане» =) Преувеличено, конечно, но и не так далеко от истины!

А поэтому не поленимся и прорешаем какое-нибудь квадратное уравнение по стандартному алгоритму :

, значит, уравнение имеет два различных действительных корня:

Легко убедиться, что оба найденных значения действительно удовлетворяют данному уравнению:

Что делать, если вы вдруг позабыли алгоритм решения, и под рукой нет средств/рук помощи? Такая ситуация может возникнуть, например, на зачёте или экзамене. Используем графический метод! И тут есть два пути: можно поточечно построить параболу , выяснив тем самым, где она пересекает ось (если пересекает вообще) . Но лучше поступить хитрее: представим уравнение в виде , начертим графики более простых функций – и «иксовые» координаты их точек пересечения, как на ладони!


Если окажется, что прямая касается параболы, то уравнение имеет два совпавших (кратных) корня. Если окажется, что прямая не пересекает параболу, значит, действительных корней нет.

Для этого, конечно, нужно уметь строить графики элементарных функций , но с другой стороны эти умения по силам даже школьнику.

И вновь – уравнение – это уравнение, а функции , – это функции, которые лишь помогли решить уравнение!

И тут, кстати, уместно будет вспомнить ещё одну вещь: если все коэффициенты уравнения умножить на ненулевое число, то его корни не изменятся .

Так, например, уравнение имеет те же самые корни. В качестве простейшего «доказательства» вынесу константу за скобки:
и безболезненно её уберу (разделю обе части на «минус два») :

НО! Если мы рассматриваем функцию , то здесь уже избавляться от константы нельзя! Допустимо разве что вынесение множителя за скобки: .

Многие недооценивают графический метод решения, считая его чем-то «несолидным», а некоторые и вовсе забывают о такой возможности. И это в корне ошибочно, поскольку построение графиков иногда просто спасает ситуацию!

Ещё один пример: предположим, вы не помните корни простейшего тригонометрического уравнения: . Общая формула есть в школьных учебниках, во всех справочниках по элементарной математике, но они вам недоступны. Однако решить уравнение критически важно (иначе «двойка»). Выход есть! – строим графики функций :


после чего спокойненько записываем «иксовые» координаты их точек пересечения:

Корней бесконечно много и в алгебре принята их свёрнутая запись:
, где ( – множество целых чисел ) .

И, не «отходя от кассы», пару слов о графическом методе решения неравенств с одной переменной. Принцип такой же. Так, например, решением неравенства является любое «икс», т.к. синусоида почти полностью лежит под прямой . Решением неравенства является множество промежутков, на которых куски синусоиды лежат строго выше прямой (оси абсцисс) :

или, если короче:

А вот множество решений неравенства – пусто , поскольку никакая точка синусоиды не лежит выше прямой .

Что-нибудь не понятно? Срочно штудировать уроки о множествах и графиках функций !

Разминаемся:

Задание 1

Решить графически следующие тригонометрические уравнения:

Ответы в конце урока

Как видите, для изучения точных наук совсем не обязательно зубрить формулы и справочники! И более того, это принципиально порочный подход.

Как я уже обнадёжил вас в самом начале урока, сложные тригонометрические уравнения в стандартном курсе высшей математики приходится решать крайне редко. Вся сложность, как правило, заканчивается уравнениями вроде , решением которого являются две группы корней, происходящие от простейших уравнений и . С решением последнего сильно не парьтесь – посмотрите в книжке или найдите в Интернете =)

Графический метод решения может выручить и в менее тривиальных случаях. Рассмотрим, например, следующее «разношёрстное» уравнение:

Перспективы его решения выглядят... вообще никак не выглядят, однако стОит только представить уравнение в виде , построить графики функций и всё окажется невероятно просто. Чертёж есть в середине статьи о бесконечно малых функциях (откроется на соседней вкладке) .

Тем же графическим методом можно выяснить, что уравнение имеет уже два корня, причём один из них равен нулю, а другой, судя по всему, иррационален и принадлежит отрезку . Данный корень можно вычислить приближённо, например, методом касательных . Кстати, в некоторых задачах, бывает, требуется не отыскать корни, а выяснить, есть ли они вообще . И здесь тоже может помочь чертёж – если графики не пересекаются, то корней нет.

Рациональные корни многочленов с целыми коэффициентами.
Схема Горнера

А теперь я предлагаю вам обернуть свой взор в средние века и прочувствовать неповторимую атмосферу классической алгебры. Для лучшего понимания материала рекомендую хоть чуть-чуть ознакомиться с комплексными числами .

Они самые. Многочлены.

Объектом нашего интереса будут наиболее распространённые многочлены вида с целыми коэффициентами . Натуральное число называют степенью многочлена , число – коэффициентом при старшей степени (или просто старшим коэффициентом) , а коэффициент – свободным членом .

Данный многочлен я буду свёрнуто обозначать через .

Корнями многочлена называют корни уравнения

Обожаю железную логику =)

За примерами сходим в самое начало статьи:

С нахождением корней многочленов 1-й и 2-й степеней нет никаких проблем, но по мере увеличения эта задача становится всё труднее и труднее. Хотя с другой стороны – всё интереснее! И как раз этому будет посвящена вторая часть урока.

Сначала буквально пол экрана теории:

1) Согласно следствию основной теоремы алгебры , многочлен степени имеет ровно комплексных корней. Некоторые корни (или даже все) могут быть в частности действительными . При этом среди действительных корней могут встретиться одинаковые (кратные) корни (минимум два, максимум штук) .

Если некоторое комплексное число является корнем многочлена, то и сопряжённое ему число – тоже обязательно корень данного многочлена (сопряжённые комплексные корни имеют вид ) .

Простейший пример – квадратное уравнение, которое впервые встретилось в8 (вроде) классе, и которое мы окончательно «добили» в теме комплексных чисел . Напоминаю: квадратное уравнение имеет либо два различных действительных корня, либо кратные корни, либо сопряжённые комплексные корни.

2) Из теоремы Безу следует, что если число является корнем уравнения , то соответствующий многочлен можно разложить на множители:
, где – многочлен степени .

И опять же, наш старый пример: поскольку – корень уравнения , то . После чего нетрудно получить хорошо знакомое «школьное» разложение .

Следствие теоремы Безу имеет большую практическую ценность: если мы знаем корень уравнения 3-й степени , то можем представить его в виде и из квадратного уравнения легко узнать остальные корни. Если нам известен корень уравнения 4-й степени , то есть возможность разложить левую часть в произведение и т.д.

И вопроса здесь два:

Вопрос первый . Как найти этот самый корень ? Прежде всего, давайте определимся с его природой: во многих задачах высшей математики требуется отыскать рациональные , в частности целые корни многочленов, и в этой связи далее нас будут интересовать преимущественно они…. …они такие хорошие, такие пушистые, что их прямо так и хочется найти! =)

Первое, что напрашивается – метод подбора. Рассмотрим, например, уравнение . Загвоздка здесь в свободном члене – вот если бы он равнялся нулю, то всё было бы в ажуре – выносим «икс» за скобки и корни сами «вываливаются» на поверхность:

Но у нас свободный член равен «тройке», и поэтому мы начинаем подставлять в уравнение различные числа, претендующие на звание «корень». Прежде всего, напрашивается подстановка единичных значений. Подставим :

Получено неверное равенство, таким образом, единица «не подошла». Ну да ладно, подставляем :

Получено верное равенство! То есть, значение является корнем данного уравнения.

Для отыскания корней многочлена 3-й степени существуют аналитический метод (так называемые формулы Кардано) , но сейчас нас интересует несколько другая задача.

Поскольку – есть корень нашего многочлена, то многочлен можно представить в виде и возникает Второй вопрос : как отыскать «младшего собрата» ?

Простейшие алгебраические соображения подсказывают, что для этого нужно разделить на . Как разделить многочлен на многочлен? Тем же школьным методом, которым делят обычные числа – «столбиком»! Данный способ я подробнейшим образом разобрал в первых примерах урока Сложные пределы , и сейчас мы рассмотрим другой способ, который получил название схема Горнера .

Сначала запишем «старший» многочлен со всеми , в том числе нулевыми коэффициентами :
, после чего занесём эти коэффициенты (строго по порядку) в верхнюю строку таблицы:

Слева записываем корень :

Сразу же оговорюсь, что схема Горнера работает и в том случае, если «красное» число не является корнем многочлена. Однако не будем торопить события.

Сносим сверху старший коэффициент:

Процесс заполнения нижних ячеек чем-то напоминает вышивание, где «минус единица» – это своеобразная «игла», которая пронизывает последующие шаги. «Снесённое» число умножаем на (–1) и прибавляем к произведению число из верхней ячейки:

Найденное значение умножаем на «красную иглу» и к произведению прибавляем следующий коэффициент уравнения:

И, наконец, полученное значение снова «обрабатываем» «иглой» и верхним коэффициентом:

Ноль в последней ячейке говорит нам о том, что многочлен разделился на без остатка (как оно и должно быть) , при этом коэффициенты разложения «снимаются» прямо из нижней строки таблицы:

Таким образом, от уравнения мы перешли к равносильному уравнению и с двумя оставшимися корнями всё ясно (в данном случае получаются сопряжённые комплексные корни) .

Уравнение , к слову, можно решить и графически: построить «молнию» и увидеть, что график пересекает ось абсцисс () в точке . Или тот же «хитрый» приём – переписываем уравнение в виде , чертим элементарные графики и детектируем «иксовую» координату их точки пересечения.

Кстати, график любой функции-многочлена 3-й степени пересекает ось хотя бы один раз, а значит, соответствующее уравнение имеет по меньшей мере один действительный корень. Данный факт справедлив для любой функции-многочлена нечётной степени.

И тут ещё хочется остановиться на важном моменте , который касается терминологии: многочлен и функция-многочлен это не одно и то же ! Но на практике частенько говорят, например, о «графике многочлена», что, конечно, небрежность.

Однако вернёмся к схеме Горнера. Как я недавно упомянул, эта схема работает и для других чисел, но если число не является корнем уравнения , то в нашей формуле появляется ненулевая добавка (остаток):

«Прогоним» по схеме Горнера «неудачное» значение . При этом удобно использовать ту же таблицу – записываем слева новую «иглу», сносим сверху старший коэффициент (левая зелёная стрелка) , и понеслось:

Для проверки раскроем скобки и приведём подобные слагаемые:
, ОК.

Легко заметить, что остаток («шестёрка») – это в точности значение многочлена при . И в самом деле – что так:
, а ещё приятнее – вот так:

Из приведённых выкладок нетрудно понять, что схема Горнера позволяет не только разложить многочлен на множители, но и осуществить «цивилизованный» подбор корня. Предлагаю вам самостоятельно закрепить алгоритм вычислений небольшой задачей:

Задание 2

Используя схему Горнера, найти целый корень уравнения и разложить соответствующий многочлен на множители

Иными словами, здесь нужно последовательно проверять числа 1, –1, 2, –2, … – до тех пор, пока в последнем столбце не «нарисуется» нулевой остаток. Это будет означать, что «игла» данной строки – есть корень многочлена

Вычисления удобно оформить в единой таблице. Подробное решение и ответ в конце урока.

Способ подбора корней хорош для относительно простых случаев, но если коэффициенты и/или степень многочлена велики, то процесс может затянуться. А может быть какие-то значения из того же списка 1, –1, 2, –2 и рассматривать-то смысла нет? И, кроме того, корни ведь могут оказаться и дробными, что приведёт к уж совсем не научному тыку.

К счастью, существуют две мощные теоремы, которые позволяют значительно сократить перебор значений-«кандидатов» в рациональные корни:

Теорема 1 Рассмотрим несократимую дробь , где . Если число является корнем уравнения , то свободный член делится на , а старший коэффициент – на .

В частности , если старший коэффициент , то этот рациональный корень – целый:

И мы начинаем эксплуатировать теорему как раз с этой вкусной частности:

Вернёмся к уравнению . Так как его старший коэффициент , то гипотетические рациональные корни могут быть исключительно целыми, причём свободный член должен обязательно делиться на эти корни без остатка. А «тройку» можно разделить только на 1, –1, 3 и –3. То есть у нас всего лишь 4 «кандидата в корни». И, согласно Теореме 1 , другие рациональные числа не могут быть корнями данного уравнения В ПРИНЦИПЕ.

В уравнении «претендентов» чуть больше: свободный член делится на 1, –1, 2, – 2, 4 и –4.

Обратите внимание, что числа 1, –1 являются «завсегдатаями» списка возможных корней (очевидное следствие теоремы) и самым лучшим выбором для первоочередной проверки.

Переходим к более содержательным примерам:

Задача 3

Решение : поскольку старший коэффициент , то гипотетические рациональные корни могут быть только целыми, при этом они обязательно должны быть делителями свободного члена. «Минус сорок» делится на следующие пары чисел:
– итого 16 «кандидатов».

И здесь сразу появляется заманчивая мысль: а нельзя ли отсеять все отрицательные или все положительные корни? В ряде случаев можно! Сформулирую два признака:

1) Если все коэффициенты многочлена неотрицательны, то он не может иметь положительных корней. К сожалению, это не наш случай(Вот если бы нам было дано уравнение – тогда да, при подстановке любого значение многочлена строго положительно , а значит, все положительные числа (причём, и иррациональные тоже) не могут быть корнями уравнения .

2) Если коэффициенты при нечётных степенях неотрицательны, а при всех чётных степенях (включая свободный член) – отрицательны, то многочлен не может иметь отрицательных корней. Это наш случай! Немного присмотревшись, можно заметить, что при подстановке в уравнение любого отрицательного «икс» левая часть будет строго отрицательна, а значит, отрицательные корни отпадают

Таким образом, для исследования осталось 8 чисел:

Последовательно «заряжаем» их по схеме Горнера. Надеюсь, вы уже освоили устные вычисления:

Удача поджидала нас при тестировании «двойки». Таким образом – есть корень рассматриваемого уравнения, и

Осталось исследовать уравнение . Это легко сделать через дискриминант, но я проведу показательную проверку по той же схеме. Во-первых, обратим внимание, что свободный член равен 20-ти, а значит, по Теореме 1 из списка возможных корней выпадают числа 8 и 40, и для исследования остаются значения (единица отсеялась по схеме Горнера) .

Записываем коэффициенты трёхчлена в верхнюю строку новой таблицы и начинаем проверку с той же «двойки» . Почему? А потому что корни могут быть и кратны, пожалуйста: – это уравнение имеет 10 одинаковых корней. Но не отвлекаемся:

И здесь, конечно, я немного слукавил, заведомо зная, что корни рациональны. Ведь если бы они были иррациональными или комплексными, то мне светила бы безуспешная проверка всех оставшихся чисел. Поэтому на практике руководствуйтесь дискриминантом.

Ответ : рациональные корни: 2, 4, 5

В разобранной задаче нам сопутствовала удача, потому что: а) сразу отвалились отрицательные значения, и б) мы очень быстро нашли корень (а теоретически могли проверить и весь список ).

Но на самом деле ситуация бывает гораздо хуже. Приглашаю вас к просмотру увлекательной игры под названием «Последний герой»:

Задача 4

Найти рациональные корни уравнения

Решение : по Теореме 1 числители гипотетических рациональных корней должны удовлетворять условию (читаем «двенадцать делится на эль») , а знаменатели – условию . Исходя из этого, получаем два списка:

«список эль»:
и «список эм»: (благо, здесь числа натуральные) .

Теперь составим перечень всех возможных корней. Сначала «список эль» делим на . Совершенно понятно, что получатся те же самые числа. Для удобства занесём их в таблицу:

Многие дроби сократились, в результате чего получись значения, которые уже есть в «списке героев». Добавляем только «новичков»:

Аналогично – делим тот же «список эль» на :

и, наконец, на

Таким образом, команда участников нашей игры укомплектована:


К сожалению, многочлен данной задачи не удовлетворяет «положительному» или «отрицательному» признаку, и поэтому мы не можем отбросить верхнюю или нижнюю строку. Придётся работать со всеми числами.

Как ваше настроение? Да ладно, выше нос – есть ещё одна теорема, которую можно образно назвать «теоремой-убийцей»…. …«кандидатов», конечно же =)

Но сначала нужно прокрутить схему Горнера хотя бы для одного целого числа. Традиционно возьмём единицу. В верхнюю строку запишем коэффициенты многочлена и всё как обычно:

Поскольку четвёрка – это явно не ноль, то значение не является корнем рассматриваемого многочлена. Но она нам очень поможет.

Теорема 2 Если при некотором целом значении значение многочлена отлично от нуля: , то его рациональные корни (если они есть) удовлетворяют условию

В нашем случае и поэтому все возможные корни должны удовлетворять условию (назовём его Условием № 1) . Данная четвёрка и будет «киллером» многих «кандидатов». В качестве демонстрации я рассмотрю несколько проверок:

Проверим «кандидата» . Для этого искусственно представим его в виде дроби , откуда хорошо видно, что . Вычислим проверочную разность: . Четыре делится на «минус два»: , а значит, возможный корень прошёл испытание.

Проверим значение . Здесь и проверочная разность составляет: . Разумеется, , и поэтому второй «испытуемый» тоже остаётся в списке.

Понравилась статья? Поделиться с друзьями: