Какие бывают многоступенчатые ракеты. Для чего ракеты делают многоступенчатыми? Одноступенчатые жидкостные ракеты

Сегодня мы расскажем об устройстве и работе многоступенчатой ракеты. Есть несколько схем таких ракет и каждая по своему уникальна.

В схеме с поперечным делением ступеней двигательные установки работают последовательно; в схеме с продольным делением двигательные установки последующей ступени могут работать одновременно с двигательными установками предыдущей ступени; в комбинированной схеме и одновременно, и последовательно. Множество различных моделей разработано в SpaceX.

К комбинированной схеме относится известная трехступенчатая ракета-носитель космического корабля «Восток», модификации которой вот уже почти четверть века выводят в космос самые различные космические аппараты. Мы расскажем о ней несколько подробнее в следующей статье.

В полете, когда еще израсходован не весь запас топлива, а лишь находящийся в баках одной ступени, происходит сброс использованных и не нужных для дальнейшего полета элементов конструкции. Пока работают двигатели первой ступени, мы можем рассматривать остальную часть ракеты в качестве полезной нагрузки.

После отделения первой ступени работают двигатели второй ступени. Они-то и добавляют к уже имеющейся скорости свою собственную и в результате суммарная скорость становится большей.

Следует отметить, что значение коэффициента К для многоступенчатой ракеты обычно немного больше, чем для одноступенчатой, так как при подъеме ракеты плотность воздуха, а следовательно, и его сопротивление постепенно уменьшаются.

Рассмотрим на конкретном примере преимущества многоступенчатой ракеты. Предположим, что поставлена задача сообщить ракете первую космическую скорость. Конструктивное совершенство ее таково, что в каждой ее ступени масса топлива составляет 80%, а на долю конструкции приходятся остальные 20%. Примем скорость истечения газов двигателей всех ступеней, равной 3000 м/с.

Условимся, что коэффициент К также остается постоянным у каждой ступени. Расчет показывает, что при этих условиях, как уже было показано выше, к концу работы двигателей первой ступени ракета разовьет скорость V1, равную 3381 м/с. После окончания работы двигателей первой ступени она отделяется, а оставшаяся часть ракеты продолжает движение. Но так как полет этой ракеты начнется не из состояния покоя, и она уже имеет скорость V1, равную 3381 м/с, то конечная скорость ее составит 6762 м/с. При скорости истечения с-3500 м/с и 4000 м/с соответственно получим V3 = 7900 м/с и 9000 м/с.

Итак, решение задачи достижения первой космической скорости найдено. Для получения же еще больших скоростей надо только увеличивать число ступеней. Однако при переходе даже от одноступенчатых ракет малой массы к более тяжелым конструкторы встретились с рядом значительных трудностей.

Они состоят в том, что при увеличении линейных размеров, например в два раза, объем и масса ракеты возрастают в восемь раз, а поперечное сечение конструкции ее элементов - в четыре раза. Соответственно возрастают, примерно в два раза, и механические напряжения, вызываемые инерционными силами.

Поэтому увеличение размера и массы ракеты не может быть достигнуто простым воспроизведением ее в более крупном масштабе. Вот почему еще на заре развития ракетной техники среди конструкторов зародилась такая крылатая фраза: «Мы должны быть ювелирами в своей работе». Она не потеряла своего значения и поныне.


Владельцы патента RU 2532289:

Изобретение относится к космической технике и может быть использовано в одноступенчатых ракетах-носителях. Одноступенчатая ракета-носитель тяжелого класса содержит двигательную установку с одним или несколькими кислородно-водородными ЖРД, топливный бак (ТБ), один или два отделяемых дополнительных топливных бака (ДТБ), установленных по тандемной схеме, одну или несколько пар диаметрально противоположных отделяемых навесных топливных баков (НТБ), проставку, трубопроводы, соединяющие ТБ с ДТБ и НТБ. Изобретение позволяет исключить поля падения отработанных топливных баков. 8 ил.

Изобретение относится к конструкции ракет-носителей и может быть использовано при разработке одноступенчатых ракет-носителей для выведения полезных нагрузок на орбиту искусственного спутника Земли (ИСЗ).

Следует отметить, что одноступенчатой ракете-носителю для достижения орбитальной скорости теоретически необходимо иметь конечную массу не более 7-10% от стартовой, что при даже существующих технологиях делает их труднореализуемыми и экономически неэффективными из-за низкой массы полезного груза. В истории мировой космонавтики одноступенчатые ракеты-носители практически не создавались - существовали только т.н. полутораступенчатые модификации (например, американской РН «Атлас» со сбрасываемыми дополнительными маршевыми двигателями). Наличие нескольких ступеней позволяет существенно увеличить отношение массы полезной нагрузки к начальной массе ракеты. В то же время многоступенчатые ракеты-носители требуют наличия территорий для падения промежуточных ступеней (Материал из Википедии - свободной энциклопедии).

Известна одноступенчатая ракета-носитель ВР-190, представленная в книге В.Н.Кобелева и А.Г.Милованова «Средства выведения космических аппаратов», 2009 г. (глава 5, стр.134).

Ракета-носитель ВР-190 была рассчитана для вертикального полета на высоту до 200 км.

Принципиальным недостатком ракеты-носителя ВР-190 было отсутствие возможности выведения полезной нагрузки на орбиту ИСЗ.

Современные работы в части ракет-носителей, основанные на использовании кислородно-водородных жидкостных ракетных двигателей (ЖРД), показали благотворное влияние криогенного топлива на основные характеристики ракеты-носителя.

Примером может служить ракета-носитель Дельта-4 (фирма Боинг, США), первая ступень которой согласно теоретическим расчетам может выводить полезные нагрузки на орбиту ИСЗ без использования второй ступени и, таким образом, выполнять роль одноступенчатой ракеты-носителя, правда полезная нагрузка при этом будет невелика (Новости космонавтики. Том 13, №1 (240), 2003 г., стр.46).

Целью изобретения является устранение этого недостатка.

Указанная цель достигается тем, что одноступенчатая ракета-носитель (фиг.1, 2), состоящая из двигательной установки с одним или несколькими кислородно-водородными ЖРД 1 и топливного бака 2, оснащена одним - двумя дополнительными топливными баками 3, которые по тандемной (продольной) схеме последовательно расположены на топливном баке 2 с помощью проставки 4, внутри которой установлена полезная нагрузка 5 и, кроме этого, ракета-носитель по пакетной (параллельной) схеме оснащена одной или несколькими парами навесных диаметрально противоположно расположенных относительно друг друга топливных баков 6, при этом баки горючего 7 и 8 и окислителя 9 и 10 топливных баков 3 и 6 соответственно соединены трубопроводами 11, 12 и 13, 14 с баками горючего 15 и окислителя 16 топливного бака ракеты-носителя 2.

В процессе работы двигательной установки 1 и забора топлива из баков горючего 15 и окислителя 16 топливного бака ракеты-носителя 2 осуществляется одновременная подача топлива в эти баки соответственно из баков горючего 8 и окислителя 10 первой пары диаметрально противоположных относительно друг друга навесных баков 6.

После выработки топлива из первой пары навесных топливных баков осуществляется их отделение и одновременный забор горючего (фиг.3, 4) и окислителя из следующей пары навесных топливных баков.

После отделения последней пары навесных топливных баков одноступенчатая ракета-носитель использует топливо из топливного бака 3 (фиг.5, 6).

После выработки топлива из бака 3 одноступенчатая ракета-носитель использует топливо из собственного топливного бака 2 вплоть до выхода на орбиту ИСЗ с дальнейшим отделением бака 3 (фиг.7, 8).

Техническим результатом изобретения, основанного на использовании дополнительных топливных баков по тандемной и пакетной схемам, расположенных на топливном баке ракеты-носителя и сбрасываемых в процессе полета, является создание нового класса экологически чистых одноступенчатых ракет-носителей тяжелого класса, способных вывести полезную нагрузку на орбиту ИСЗ и являющихся экономичной и надежной транспортной системой. При этом сокращается номенклатура и количество используемых в одноступенчатой ракете-носителе дорогостоящих ЖРД и практически исключается проблема выбора места старта ракеты-носителя и полей падения, поскольку навесные топливные баки изготавливаются из алюминиевых сплавов и других материалов, сгорающих в атмосфере Земли.

Одноступенчатая ракета-носитель тяжелого класса, состоящая из двигательной установки с одним или несколькими кислородно-водородными жидкостными ракетными двигателями и топливного бака, отличающаяся тем, что одноступенчатая ракета-носитель оснащена одним - двумя дополнительными топливными баками, которые по тандемной (продольной) схеме последовательно расположены на топливном баке ракеты-носителя с помощью проставки, и, кроме этого, ракета-носитель оснащена по пакетной (параллельной) схеме одной или несколькими парами диаметрально противоположных относительно друг друга топливных баков, при этом баки горючего и окислителя дополнительных топливных баков соединены трубопроводами с баками горючего и окислителя топливного бака одноступенчатой ракеты-носителя, при этом боковые навесные топливные баки установлены с возможностью их отделения после выработки топлива, дополнительные баки - с возможностью отделения.

Похожие патенты:

Изобретение относится к космонавтике, а именно к бакам для хранения компонентов ракетного топлива. Космическая пусковая установка содержит криогенный бак, содержащий оболочку, одну перегородку (ограничивающую верхний и нижний объём текучей среды) с центральным проёмом (связывающий верхний и нижний объём текучей среды), вентиляционный канал с корпусом, удерживающим барьером (стенка) или механическим ограничителем, и проходами в перегородке.

Изобретение относится к композитным материалам, предназначенным для применения в космосе. Использование, по меньшей мере, одной полимеризуемой смолы R1, выбираемой из группы, состоящей из эпоксидированных полибутадиеновых смол и характеризующейся в неполимеризованном состоянии: - величиной общей потери массы (ОПМ), меньшей чем 10%, величиной восстановленной потери массы (ВПМ), меньшей чем 10%, и величиной собранного летучего конденсируемого материала (СЛКМ).

Изобретение относится к космической технике, а именно к компоновке космических аппаратов. Ёмкость изготавливают с тремя отверстиями для отвода пара, основное отверстие выполняют с центром, через который проходит центральная ось емкости, параллельная продольной оси спутника, направленная в сторону центра масс спутника, два дополнительных отверстия выполняют с центрами, через которые проходит другая параллельная ось емкости, параллельная оси спутника, направленная по направлению полета его.

Изобретение относится к оборудованию космических аппаратов (КА) и, в частности, к их энергодвигательным системам. Электролизная установка КА включает в себя твердополимерный электролизер, подключенный к системе электропитания КА, и систему водоснабжения.

Изобретение относится к крылатым летательным аппаратам, в которых используется криогенное топливо, и касается ракетных блоков многоразового использования. Планер летательного аппарата включает корпус с криогенным цилиндрическим баком, крыло, элементы крепления крыла.

Группа изобретений относится к конструкции частей и элементов летательного аппарата, преимущественно к устройству кормовой части космического самолета (КС), а также к способам коррекции траектории и оптимизации тяги ракетного двигателя КС.

Изобретение относится к ракетно-космической технике, криогенной технике и касается пневмогидравлического соединения стыкуемых объектов. Устройство защиты пневмогидравлического соединения содержит кожух, который установлен на соединение и снабжен штуцером с заглушкой.

Изобретение относится к ракетной технике, а именно к одноступенчатым ракетам-носителям. Одноступенчатая ракета-носитель содержит один или несколько жидкостных ракетных двигателей, топливный бак с баками горючего и окислителя, одну или несколько пар навесных топливных баков горючего и окислителя, соединенных соответственно с баками горючего и окислителя топливного бака.

Изобретение относится к космической технике и может быть использовано в одноступенчатых ракетах-носителях. Одноступенчатая ракета-носитель тяжелого класса содержит двигательную установку с одним или несколькими кислородно-водородными ЖРД, топливный бак, один или два отделяемых дополнительных топливных бака, установленных по тандемной схеме, одну или несколько пар диаметрально противоположных отделяемых навесных топливных баков, проставку, трубопроводы, соединяющие ТБ с ДТБ и НТБ. Изобретение позволяет исключить поля падения отработанных топливных баков. 8 ил.

Схема с несущими баками

Переходная схема

Схема с подвесными баками

ОДНОСТУПЕНЧАТЫЕ ЖИДКОСТНЫЕ РАКЕТЫ.

Жидкостных баллистических ракет дальнего действия и ра­кет-носителей к настоящему времени создано очень много. Но надо начинать с наиболее простого и наглядного. Поэтому мы обратимся к самой старой и имеющей сейчас лишь историческое значение немецкой ракете «Фау-2». Ее считают первой жидкостной баллистической ракетой.

Слово «первая», однако, нуждается в разъяснениях. Уже в предвоенные, тридцатые, годы принципы конструкции баллистической жидкостной ракеты хорошо были известны специалистам. Уже существовали (и в первую очередь в Советском Союзе) достаточно совершенные жидкостные ракетные двигатели. Уже разрабатывались и создавались гироскопические системы для стабилизации ракет. Уже испытывались первые образцы жидкостных ракет, предназначенных для исследования стратосферы. Поэтому ракета «Фау-2» возникла не на ровном месте. Но на серийное производство она вышла первой. Также первой она нашла и военное применение, когда в пароксизме отчаяния, в 1943 г. немецкое командование


дало приказ о бессмысленном обстреле этой ракетой жилых кварталов Лондона. Ко­нечно, этот шаг никак не мог повлиять на общий ход военных событий. Кудабольшее влияние оказала прославленная отече­ственная ракетная артиллерия, совершенные образцы которой испытывались в первые дни Отечественной войны непосредственно на полях сражений. Но сейчас не о военном применении ракет идет речь.Сколь бы ни печальна была история ракеты «Фау-2», нас в данном случае интересует только схема ее устройства и прин­ципы компоновки. Для нас - это весьма удобное аудиторное пособие, которое поможет читателю ознакомиться с общим устройством вообще всех баллистических жидкостных ракет, и не только с устройством. С высот накопленного к настоящему вре­мени опыта легко дать оценку этой конструкции и показать, как в дальнейшем развивались ее достоинства и устранялись недо­статки: какими путями шел технический прогресс.

Стартовый вес ракеты «Фау-2» составлял примерно 13 тс, а дальность ее действия приближалась к 300 км. Ракета в разрезе показана на плакате.

Корпус жидкостной баллистической ракеты делится по длине на несколько отсеков (рис.3.1): топливный отсек (Т. О), включающий в себя баки горючего 1 и окислителя 2; хвостовой отсек (X. О) с двигателем и приборный отсек (П. О), к которому пристыкована боевая часть (Б. Ч). Само понятие «отсек» связано не только с функциональным назначением какой-то части ракеты, но, в первую очередь, с наличием поперечных разъемов, допускающих раздельную поагрегатную сборку и последующую стыковку. В некоторых типах ракет приборный отсек как самостоятельная часть корпуса отсутствует, а приборы управления поблочно размещаются в свободном пространстве с учетом удобства подходов и обслуживания на старте и минимальной про­тяженности кабельной сети.



Как и все управляемые баллистические ракеты, «Фау-2» снабжена автоматом стабилизации. Гироприборы и прочие блоки автомата стабилизации расположены в приборном отсеке и смонтированы на крестовидной панели.

Исполнительными органами автомата стабилизации являются газоструйные и воздушные рули. Газоструйные рули 3 располагаются в струе истекающих из камеры 4 газов и крепятся со своими приводами - рулевыми машинами - на жестком рулевом кольце 5 . При отклонении рулей возникает момент, поворачивающий ракету в нужном направлении. Так как газоструйные рули работают в исключительно тяжелых температурных условиях, они изготовлялись из наиболее термостойкого материала - графита. Воздушные рули 6 играют вспомогательную роль и дают эффект только в плотных слоях атмосферы и при доста­точно большой скорости полета.

В качестве топливных компонентов в ракете «Фау-2» используется жидкий кислород и этиловый спирт. Поскольку острая проблема охлаждения двигателя не могла в то время получить должного решения, проектанты пошли на потерю удельной тяги, забалластировав этиловый спирт водой и снизив его концентра­цию до 75%. Общий запас спирта на борту ракеты составляет 3,5 г, а жидкого кислорода - 5г.

Основными элементами двигателя, расположенного в хвостовом отсеке, является камера 4 и турбонасосный агрегат (ТНА) 7, предназначенный для подачи топливных компонентов в камеру сгорания.

Турбонасосный агрегат состоит из двух центробежных насосов - спиртового и кислородного, установленных на общем валу с газовой турбиной. Турбина приводится в действие продуктами разложения перекиси водорода (водяной пар + кислород), которые образуются в так называемом парогазогенераторе (ПГГ) (на рисунке не виден). Перекись водорода подается в реактор ПГГ из бака 3 и разлагается в присутствии катализатора - водного раствора перманганата натрия, подаваемого из бачка 9. Эти компоненты вытесняются из баков сжатым воздухом, содержащимся в баллонах 10. Таким образом, работа двигательной установки обеспечивается общим счетом четырьмя компонентами - двумя основными и двумя вспомогательными для парогазогенерации. Не следует, конечно, забывать и о сжатом воздухе, запас которого необходим для подачи вспомогательных компонентов и для работы пневмоавтоматики.

Перечисленные элементы - камера, ТНА, баки вспомогательных компонентов, баллоны со сжатым воздухом - вместе с подводящими трубопроводами, клапанами и прочей арматурой монтируются на силовой раме 11 и образуют общий энергетический блок, который и называется жидкостным ракетным двигателем (ЖРД).

При сборке ракеты рама двигателя пристыковывается к заднему шпангоуту 12 и закрывается тонкостенной подкрепленной оболочкой - корпусом хвостового отсека, снабженного четырьмя стабилизаторами.

Тяга двигателя ракеты «Фау-2» на Земле составляет 25 тс, а в пустоте - около 30 тс. Если эту тягу разделить на суммар­ный весовой расход, состоящий из 50 кгс/сек спирта, 75 кгс/сек кислорода и 1,7 кгс/сек перекиси водорода и перманганата, то получим удельную тягу 198 и 237 единиц на Земле и в пустоте соответственно. По современным понятиям такая удельная тяга для жидкостных двигателей считается, конечно, очень низкой.

Обратимся к так называемой силовой схеме. Этому довольно ясному по смыслу понятию трудно подобрать краткое и четкое определение. Силовая схема представляет собой то конструктивное решение, в основу которого положены соображения прочности и жестко­сти всей конструкции, ее способность противостоять нагрузкам, действующим на ракету в целом.

Можно провести аналогию. У высших животных силовая схема - скелетная. Кости скелета являются основными несущими элементами, поддерживающими тело и замыкающими на себя все мышечные усилия. Но скелетная схема не единственная. Панцирь рака, краба и других им подобных существ может рассматриваться не только как средство защиты, но и как элемент общей силовой схемы. Такую схему следовало бы назвать оболочечной. При более глубокой осведомленности в области биологии можно было бы, по-видимому, найти примеры и других силовых схем в природе. Но сейчас речь - о силовой схеме ракетной конструкции.

На участке выведения ракеты «Фау-2» тяга двигателя передается на задний силовой шпангоут 12. Ракета движется с ускорением, и во всех поперечных сечениях корпуса, расположенных выше силового шпангоута, возникает осевая сжимающая сила. Вопрос заключается в том, какие элементы корпуса должны ее воспринимать - баки, продольные подкрепления, специальная рама или, может быть, достаточно в

баках создать повышенное давление, и тогда конструкция обретет несущую способность подобно хорошо накачанной автомобильной шине. Решение этого вопроса и составляет предмет выбора силовой схемы.

В ракете «Фау-2» принята схема внешнего силового корпуса и подвесных баков. Силовой корпус 13 представляет собой стальную оболочку с продольно-поперечным набором подкрепляющих элементов. Продольные подкрепляющие элементы называются стрингерами, а наиболее мощные из них - лонжеронами. Поперечные кольцевые элементы называют шпангоутами. Для удобства монтажа корпус ракеты имеет продольный болтовой разъем.

Нижний кислородный бак 2 опирается на тот же самый силовой шпангоут 12, к которому, как уже говорилось, крепится рама двигателя с хвостовым обтекателем. Спиртовой бак подвешивается на переднем силовом шпангоуте 14, с которым стыкуется и приборный отсек.

Таким образом, в ракете «Фау-2» топливные баки исполняют только роль емкостей и в силовую схему не включаются, а главным силовым элементом является корпус ракеты. Но он рассчитывается не только на нагрузки участка выведения. Важно еще обеспечить прочность ракеты при подходе к цели, и это обстоятельство заслуживает особого обсуждения.

После выключения двигателя газоструйные рули не могут выполнять своих функций, а так как выключение производится уже на большой высоте, где практически отсутствует атмосфера, то полностью теряют эффективность также воздушные рули и хвостовой стабилизатор. Поэтому после выключения двигателя ракета становится неориентируемой. Полет происходит в режиме неопределенного вращения относительно центра масс. При входе в сравнительно плотные слои атмосферы хвостовой стабилизатор ориентирует ракету по полету, и на конечном участке траектории она движется головной частью вперед, несколько затормаживаясь в воздухе, но,сохраняя к моменту встречи с целью скорость 650-750 м/сек.

Процесс стабилизации связан с возникновением больших аэродинамических нагрузок на корпус и хвостовое оперение. Это - неконтролируемый полет с углами атаки, меняющимися в пределах ±180°. Обшивка нагревается, а в поперечных сечениях корпуса возникают значительные изгибающие моменты, на которые в основном и ведется расчет на прочность.

По первому впечатлению кажется неясным, так ли уж необходимо заботиться о прочности ракеты на заключительном участке траектории. Ракета почти долетела, и дело, как будто, сделано. Даже если корпус и разрушится, боевая часть все равно достигнет цели, взрыватели сработают, и разрушительное действие ракеты будет обеспечено.

Такой подход, однако, неприемлем. Нет никаких гарантий, что при разрушении корпуса не будет поврежден сам боевой заряд, а такое повреждение в сочетании с местным перегревом чревато преждевременным траекторным взрывом. Кроме того, в условиях разрушения конструкции процесс последующего движения обладает очевидной непредсказуемостью. Даже исправная, неразрушающаяся ракета и то получает на атмосферном участке свободного полета некоторое неопределенное изменение вектора скорости. Аэродинамические силы могут увести и действительно уводят ракету от расчетной траектории. В дополнение к неизбежным ошибкам для участка выведения появляются новые неучитываемые погрешности. Ракета падает с недолетом, перелетом, ложится правее или левее цели. Возникает рассеивание, которое вследствие неопределенных условий входа в атмосферу заметно возрастает. Если же смириться с разрушением корпуса и соответственно - с потерей стабилизации и скорости, то затяжная неопределенность движения приведет и вовсе к недопустимому увеличению рассеивания. Происходит нечто подобное тому, что мы видим, когда следим за траекторией осыпающихся листьев: та же неопределенность траектории и та же потеря скорости. Кстати, снижение скорости у цели для боевой ракеты типа «Фау-2» также нежелательно. Кинетическая энергия массы ракеты и энергия взрыва остатков топливных компо­нентов для такого вида оружия давали вполне ощутимую прибавку к боевому действию тонны взрывчатого вещества, находящегося в головной части ракеты.

Итак, корпус ракеты должен быть достаточно прочным на всех участках траектории. И если теперь, не вникая в подробности, критически взглянуть на ракету «Фау-2» в целом, то можно сделать вывод, что именно силовая схема является наиболее слабым местом этой конструкции, поскольку необходи­мость чрезмерного усиления корпуса существенно снижает весовые характеристики ракеты. Следовательно, необходимо искать иное конструктивное решение.

При анализе силовой схемы, естественно, возникает мысль отказаться от несущего корпуса и возложить силовые функции на стенки баков, дополнительно, быть может, усилив их и поддержав умеренным внутренним давлением. Но такое решение пригодно лишь для активного участка. Что же касается стабилизации ранеты при возвращении на атмосферный участок траектории, тс от этого придется отказаться и сделать головную часть отделяющейся.

Таким образом, рождается силовая схема с несущими баками. Топливные баки должны удовлетворять условиям прочности только при регламентированных, заранее определенных нагрузках и тепловых режимах активного участка. После выключения двигателя происходит отделение головной части, снабженной собственным аэродинамическим стабилизатором. С этого момента корпус ракеты с уже выключенной двигательной установкой и головная часть летят практически по общей траектории, раздельно и не имея определенной угловой ориентации. При входе в плотные слои атмосферы корпус, обладающий большим аэродинамическим сопротивлением, начинает отставать, разрушается, и его части падают, не долетая до цели. Головная часть стабилизируется, сохраняет относительно высокую скорость и доносит боевой заряд в заданную точку. При такой схеме, понятно, кинетическая энергия массы ракеты не включается в эффект боевого действия. Однако снижение общего веса конструкции позволяет компенсировать эту потерю увеличением полезной нагрузки. В случае же перехода к ядерной боевой головке кинетическая энергия массы ракеты вообще не имеет значения.

Теперь посмотрим, что же мы получаем и что теряем; каков актив и пассив при переходе к схеме несущих баков и отделяю­щейся головной части. Очевидно, в актив следует записать отсутствие силового корпуса и отсутствие хвостового стабилиза­тора, надобность в котором теперь отпадает. В актив надо запи­сать возможность перехода от стали к более легким алюминиево-магниевым сплавам: атмосферный участок выведения ракета проходит с относительно небольшой скоростью, и нагрев корпуса невелик. И, наконец, есть еще одно важное обстоятельство. Расчетные нагрузки на активном участке обладают достаточно высокой степенью достоверности; они регламентированы точно выдерживаемыми условиями выведения. Что же касается входа в атмосферу, то для этого участка траектории нагрузки определяются с меньшей точностью. Доверие к расчетным нагрузкам активного участка позволяет снизить назначаемый коэффициент запаса, что для ракеты с отделяющейся головной частью дает дополнительное снижение веса.

В пассив придется внести некоторое увеличение веса баков; их надо усилить. Возможно, придется сюда же записать дополнительный вес сжатого воздуха и систем наддува топливных баков. В пассив запишется также и вес нового стабилизатора головной части. Но, конечно, такой стабилизатор весит много меньше, чем старый, предназначенный для ракеты в целом. И, наконец, от старого стабилизатора могут сохраниться некоторые рудименты в виде так называемых пилонов. На них возлагается две задачи. Пилоны дают некоторое стабилизирующее действие, что позволяет несколько упростить условия работы автомата стабилизации. Кроме того, пилоны позволяют вынести воздушные рули, если таковые имеются, подальше от корпуса в свободный и «незатененный» аэродинамический поток.

Естественно, что в подобных рассуждениях за и против нельзя довольствоваться только умозрительными утверждениями. Нужен подробный проектный анализ, числовые оценки и расчет. А такой расчет указывает на несомненные весовые преимущества новой силовой схемы.

Приведенные соображения относятся только к ракетам, имеющим турбонасосную систему подачи. Если же подача компонентов осуществляется высоким давлением, создаваемым в топливных баках (такая подача называется вытеснительной), то логика силовой схемы несколько меняется.

В случае вытеснительной подачи топливные баки рассчитываются в первую очередь на внутреннее давление, и, удовлетворяя условию прочности по давлению, такие баки, как правило, автоматически удовлетворяют как прочностным, так и температурным требованиям во всех режимах полета. Следовательно, им и на роду написано быть несущими. Подвесные баки при вытеснительной подаче были бы очевидной нелепицей.

Бак, рассчитанный на высокое внутреннее давление вытеснительной подачи, удовлетворяет, как правило, и условию прочности корпуса при входе в атмосферу. Следовательно, отделение головной части для такой ракеты не обязательно, но тогда корпус должен быть снабжен хвостовым стабилизатором.

Идея отделяющейся головной части впервые была реализована в 1949 г. на одной из самых ранних отечественных баллистических ракет – Р-2. На ее основе была создана несколько позже и геофизическая модификация ракеты - В2А. Конструкция ракеты В2А представляет собой любопытный и поучительный гибридный вариант старой и новой нарождающейся силовых схем и заслуживает обсуждения, как пример развития конструкторской мысли.

Ракета имеет только один несущий бак - передний, спирто­вой, а кислородный бак помещен в облегченный силовой корпус, рассчитанный только на нагрузки активного участка. Отделяющаяся головная часть 2 снабжена собственным хвостовым стабилизатором 3, представляющим собою подкреп­ленную оболочку в форме усеченного конуса. В геофизическом варианте стабилизатор 3 спасаемой головной части имеет механизм для раскрытия тормозных щитков 4, которые снижают скорость падения головной части до 100-150 м/сек, после чего раскрывается парашют. На рисунке 2 показана головная часть после приземления. Виден смятый носовой амортизирующий наконечник 1 и раскрытые щитки 4, частично оплавившиеся при торможении в атмосфере.

Торцевой шпангоут стабилизатора головной части крепится специальными замками к опорному шпангоуту, расположенному в верхней части спиртового бака. После команды на разделение замки размыкаются, а головная часть получает небольшой импульс от пружинного толкателя.

Приборный отсек 8 имеет свободно отпирающиеся замковые люки с герметизацией и расположен не в верхней, а в нижней части ракеты, что представляет определенные удобства для проведения предстартовых операций.

Рассматривая ракету В2А более детально, можно было бы отметить и другие ее особенности. Но главное не в этом. Поразительной и в то же время весьма поучительной особенностью этой конструкции является логическое несоответствие между принципом отделяющейся головной части и наличием хвостового стабилизатора. На участке выведения ориентация ракеты обеспечивается автоматом стабилизации. Что же касается аэродинамической стабилизации при входе в плотные слои атмосферы, то хвостовое оперение здесь не может ничем помочь, поскольку кор­пус не обладает для этого необходимой прочностью.

Конечно, было бы наивностью полагать, что проектанты не видели или не понимали этого. Конструкция, попросту говоря, явилась обычным, часто встречающимся в инженерной практике техническим компромиссом - уступкой временным обстоятельствам. Уже был накоплен опыт создания ракет со стабилизаторной схемой и с подвесными баками. Отработанная система газо­струйных и воздушных рулей была надежной и не вызывала опасений, а автомат стабилизации не требовал серьезной переналадки, которая была бы неизбежной при переходе к новым аэродинамическим формам. Поэтому в обстановке, когда еще велись теоретические дискуссии, чем грозит переход на бесстабилизаторную аэродинамически неустойчивую схему, проще было, не дожидаясь создания новых отработанных систем управления, остановиться на старой. Потеряв что-то в весовых показателях, легче было утвердиться на определенных уже завоеванных позициях. На пути к реальному воплощению схемы с несущими баками нужно было найти нечто среднее между стремлением к скорейшему достижению цели и опасностью длительной экспериментальной доводки, между неизбежной пе­реналадкой производства и использованием уже существующей цеховой оснастки, между риском неудачи и разумной предусмотрительностью. Иначе серией неудач при пусках, что вовсе не исключено, можно было бы скомпрометировать идею в самой основе и дать пищу стойкому недоверию к новой схеме, сколь бы многообещающей и логически обоснованной она ни была.

И еще один, не столь важный, но любопытный психологический аспект. Конструкция ракеты В2А по тем временам не казалась необычной. Сила привычки видеть на всех существовавших до того маленьких и больших ракетах хвостовое оперение сохраняла у стороннего наблюдателя иллюзию обыденности, и внешний вид ракеты не провоцировал на преждевременную и неквалифицированную критику конструкции в целом. То же самое можно сказать и по поводу конструкции кислородного бака. Использование жидкого кислорода в ту пору было средоточием особых мнений, основанных на беспокойстве по поводу низкой температуры кипения этого топливного компонента. Наличие теплоизоляции кислородного бака на ракете В2А успокаивало многих и не перегружало и без того достаточный круг забот, стоящих перед главным конструктором. Надо было показать, что несущий спиртовой бак исправно выполняет силовые функции, что головная часть успешно отделяется и благополучно достигает цели, а автоматика и приборы управления, расположенные вблизи двигателя, несмотря на повышенный уровень вибрации, способны работать так же хорошо, как они работали, находясь в головном отсеке.

Переход к новой силовой схеме был связан, естественно, с одновременным решением и ряда других принципиальных вопросов. Это касалось, прежде всего, конструкции двигателя. Двигатель РД-101, установленный на ракете В2А, обеспечивал 37 и 41,3 тс земной и пустотной тяги или 214 и 242 единицы удельной тяги у поверхности Земли и в пустоте соответственно. Достигалось это повышением концентрации спирта до 92%, повышением давления в камере и дополнительным расширением выходного сечения сопла.

Создатели двигателя отказались от жидкого катализатора для разложения перекиси водорода. Он был заменен твердым катализатором, заранее закладываемым в рабочую полость парогазогенератора. Таким образом, число жидких компонентов уменьшилось с четырех, как это было у «Фау-2», до трех. Появился и новый, ставший вскоре тради­ционным, торовый баллон для перекиси водорода, удобно вписывающийся в компоновку ракеты. Было положено начало и некоторым другим нововведениям, перечислять которые здесь не имеет смысла.

Естественно, что ракета В2А как переходной вариант от одной силовой схемы к другой не могла, да и не должна была воспроизводиться в последующих модернизированных формах. Необходимо было полностью реализовать идею несущих баков и отделяющейся головной части, что и было сделано С. П. Королевым в последующих разработках.

Первые образцы ракет с несущими баками были испытаны и отработаны в начале 50-х годов. После этого отрабатывались некоторые модификации. Так, в частности, появилась и метеорологическая ракета В5В (боевая ракета Р-5). Ныне макетный образец баллистической ракеты с несущими баками занимает почетное место исторического экспоната перед входом в музей Советской Армии в Москве.

При переходе на новую модернизированную схему в целях повышения дальности был увеличен стартовый вес и форсирован режим работы двигателя. Переход на схему несущих баков, конечно, более высокий уровень технологии и тщательная проработка конструкции позволили довести коэффициент весо­вого качества α к до 0,127 (вместо 0,25 у «Фау-2») при относи­тельном конечном весе µ k ~ 0,16.

Наиболее серьезным переработкам в ракете В5В подверга­лась система управления. Как-никак, но это была первая аэро­динамически неустойчивая ракета, снабженная очень небольшим хвостовым оперением и воздушными рулями. На этой же ракете в дальнейшем впервые были применены гироплатформа и новый принцип функционального выключения двигателя.

На ракете В5В в качестве топлива по-прежнему использо­вался 92%-ный этиловый спирт и жидкий кислород. Отработка ракеты показала, что отсутствие теплоизоляции на боковой поверхности кислородного бака не влечет за собой не­приятных последствий. Несколько повышенное испарение кисло­рода за время предстартовой подготовки легко компенсируется подпиткой, т. е. автоматизированной дозаправкой кислорода не­посредственно перед стартом. Эта операция необходима вообще для всех ракет на низкокипящих топливных компонентах.

Таким образом, после ракеты В5В схема несущих баков и от­деляющейся головной части стала реальностью. Все современ­ные жидкостные баллистические ракеты дальнего действия и их более высокая ступень - ракеты-носители создаются ныне толь­ко на основе этой силовой схемы. Именно ее развитие на базе современной технологии и бесчисленных конструктивных улуч­шений породило обобщенный образ той машины, которая по справедливости символизирует вершины технического прогресса нашего времени.

Сейчас ракету В5В можно рассматривать столь же критически, как во времена ее создания рассматривалась ракета «Фау-2». При сохранении общей компоновки и основных принципов сило­вой схемы возможно дальнейшее снижение веса и повышение ос­новных характеристик, а пути решения этой задачи легко просма­триваются и уясняются на примерах более поздних конструкций.

На рис. 3.3 показан одноступенчатый вариант американской баллистической ракеты «Тор»; она выполнена также по типичной схеме несущих баков и имеет отделяющуюся головную часть. Суммарный вес топливных компонентов (кислород + керосин) составляет 45 тс при чистом весе конструкции (без головной ча­сти) 3,6 тс. Это означает следующее. Если условно принять суммарный вес остатков топлива 0,4 тс, то для знакомого нам ко­эффициента весового качества α к получим значение 0,082. При­нимая вес головной части примерно 2 тс, получаем параметр µ K = 0,12. Можно также установить, что при удельной пустотной тяге кислородно-керосинового топ­лива, принятой равной 300 единицам, дальность этой ракеты составляет 3000 км.

В основе высоких весовых показате­лей современных ракет, в частности и этой, лежит тщательная проработка мно­гих элементов, перечислить которые было бы очень трудно, но некоторые, доста­точно общие и типичные, указать можно.

Стенки топливных баков 1 и 2 имеют вафельную конструкцию. Это - тонко­стенная оболочка, изготовленная из вы­сокопрочного алюминиевого сплава с ча­сто расположенными продольно-попе­речными подкреплениями, играющими ту же роль, что и силовой набор в корпусе ракеты «Фау-2», но с большим ве­совым качеством. Широко распростра­ненная в настоящее время вафельная конструкция изготовляется обычно механическим фрезерованием. В ряде случаев, однако, применяется и хи­мическое фрезерование. Заготовка обечайки исходной толщины h 0 подвергается тщательно контролируе­мому травлению в кислоте по той части поверхности, где необходимо убрать лишний металл (остальная часть поверх­ности предварительно покрывается ла­ком). Оставшаяся после травления тол­щина h должна обеспечить герметич­ность и прочность образовавшейся пане­ли при заданном внутреннем давлении, а продольные и поперечные ребра сооб­щают оболочке повышенную жесткость на изгиб, которой определяется устойчи­вость конструкции при осевом сжатии. Регулярность распределения продоль­ных и поперечных ребер преднамеренно нарушается в зоне сварных швов, которые, как известно, обла­дают несколько пониженной прочностью по сравнению с листом проката, а также - у торцов обечайки, где еще предстоит при­варить днища. В этих местах толщина заготовки сохраняется неизменной.

Существуют и другие способы изготовления вафельных кон­струкций. Однако мы сознательно остановились на химическом фрезеровании, чтобы показать, какой ценой в прямом и пере­носном смысле достигаются те весовые показатели конструкции, которые свойственны современной ракетной технике.

Ракета «Тор» имеет укороченный и облегченный хвостовой отсек З, на торце которого крепятся два управляющих двига­теля. Отказ от газоструйных рулей связан, естественно, с их высоким газодинамическим сопротивлением в струе истекающих газов. Применение управляющих двигателей несколько услож­няет конструкцию, но дает существенный выигрыш в удельной тяге.

Из сказанного не должно складываться впечатления, что уп­равляющие камеры появились впервые именно на этой балли­стической ракете. Такая система силовых органов управления применялась в различных исполнениях и раньше, в частности, на ракете-носителе системы «Восток» или «Союз», о которых речь впереди. Одноступенчатый вариант ракеты «Тор» рассматривается здесь исключительно как пример следующего за раке­той В5В поколения баллистических ракет.

Почти на всех баллистических ракетах устанавливаются так­же и тормозные твердотопливные двигатели 6. Это - тоже не из последних новинок. Задача тормозных двигателей заключается в том, чтобы, затормозив корпус ракеты, отвести его от головной части при ее отделении; именно - корпус, не сообщая головной части дополнительной скорости.

Выключение жидкостного двигателя не является мгновенным. После закрытия клапанов топливных магистралей в течение последующих долей секунды в камере еще продолжается горе­ние и испарение оставшихся компонентов. В результате ракета получает небольшой дополнительный импульс, называемый им­пульсом последействия . При расчете дальности на него вводится поправка. Однако сделать это точно невозможно, поскольку им­пульс последействия не обладает стабильностью и меняется от случая к случаю, что является одной из существенных причин рассеивания по дальности. С тем, чтобы уменьшить это рассеи­вание, и используются тормозные двигатели. Момент их включения согласовывается с командой на выключение жидкостного двигателя таким образом, чтобы импульс последействия в ос­новном был скомпенсирован.

Будет поучительным сопоставить геометрические пропорции ракет В5В и «Тор». Ракета В5В более вытянута. Отношение длины к диаметру (так называемое удлинение ракеты) для нее существенно больше, чем у ракеты «Тор»; примерно 14 про­тив 8. Различие в удлинениях вызывает и различные заботы. С увеличением удлинения снижается частота собственных поперечных колебаний ракеты, как упругой балки, и это заставляет считаться с возмущениями, которые поступают на вход системы стабилизации в результате угловых перемещений при изгибе корпуса. Иными словами, должна быть обеспечена стабилизация уже не жесткой, а изгибающейся ракеты. В некоторых случаях это вызывает серьезные трудности,

При малом удлинении ракеты этот вопрос естественно сни­мается, но зато возникает другая неприятность - возрастает роль возмущений от поперечных колебаний жидкости в баках, и если надлежащим подбором параметров автомата стабилизации не удается их парировать, приходится устанавливать в баках перегородки, ограничивающие подвижность жидкости. На рисунке частично показаны узлы 7 для крепления гасителей колебаний в баке горючего. Естественно, такое решение приводит к ухуд­шению весовых характеристик ракеты.

Ракету «Тор» не следует рассматривать как образец совер­шенства. Вместе с тем, любым критическим замечаниям по по­воду ее компоновки проектанты могли бы, наверное, противопо­ставить и свои контрдоводы. На примере ракеты В2А мы уже ви­дели, что обоснованная критика конструктивного решения может проводиться только с учетом конкретных условий проектирования и производства, а главное - перспективных задач, которые ста­вят перед собой создатели новой машины. А ракета «Тор» относится как раз к числу таких, на базе которых возможно создание ракетно-космических систем.

Изобретение относится к многоразовым транспортным космическим системам. Предлагаемая ракета содержит осесимметричный корпус с полезной нагрузкой, маршевую двигательную установку и взлетно-посадочные амортизаторы. Между стойками указанных амортизаторов и соплом маршевого двигателя установлен теплозащитный экран, выполненный в виде пустотелого тонкостенного отсека из теплостойкого материала. Техническим результатом изобретения является минимизация газодинамических и тепловых нагрузок на амортизаторы от работающего маршевого двигателя при стартах и посадках ракеты-носителя и обеспечение вследствие этого требуемой надежности амортизаторов при многократном (до 50 раз) использовании ракеты. 1 ил.

Авторы патента:
Вавилин Александр Васильевич (RU)
Усолкин Юрий Юрьевич (RU)
Фетисов Вячеслав Александрович (RU)

Владельцы патента RU 2309088:

Федеральное государственное унитарное предприятие "Государственный ракетный центр "КБ им. академика В.П. Макеева" (RU)

Изобретение относится к ракетно-космической технике, в частности к многоразовым транспортным космическим системам (МТКС) нового поколения типа «Космическая орбитальная ракета - одноступенчатый носитель аппаратов» («КОРОНА») при пятидесяти- стократном ее использовании без капитального ремонта, которая является возможной альтернативой крылатым многоразовым системам типа «Спейс Шаттл» и «Буран».

Система «КОРОНА» предназначена для выведения полезной нагрузки (космических аппаратов (КА) и КА с разгонными блоками (РБ) на низкие околоземные орбиты в диапазоне высот от 200 до 500 км с наклонением, равным наклонению орбиты выводимого КА или близким к нему.

Известно, что при старте ракета расположена на пусковом устройстве, при этом находится в вертикальном положении и опирается на четыре опорных кронштейна хвостового отсека, на который действует вес полностью заправленной ракеты и ветровые нагрузки, создающие опрокидывающий момент, которые при одновременном действии являются наиболее опасными для прочности хвостового отсека ракеты (см., например, И.Н.Пенцак. Теория полета и конструкция баллистических ракет. - М.: Машиностроение, 1974, стр.112, Рис.5.22, стр.217, Рис.11.8, стр.219). Нагрузка при стоянке полностью заправленной ракеты распределяется на все опорные кронштейны.

Одним из принципиальных вопросов предлагаемой МТКС является разработка взлетно-посадочных амортизаторов (ВПА).

Проведенные в Государственном ракетном центре (ГРЦ) работы над проектом «КОРОНА» показали, что наиболее неблагоприятным случаем нагружения ВПА является посадка ракеты.

Нагрузка на ВПА при стоянке полностью заправленной ракеты распределяется на все опоры, в то время как при посадке, с большой долей вероятности, из-за допускаемого отклонения от вертикального положения корпуса ракеты возможна реализация случая, когда нагрузка приходится на одну опору. С учетом наличия вертикальной скорости эта нагрузка оказывается сопоставимой или даже превышающей нагрузку на стоянке.

Это обстоятельство позволило принять решение от отказе от специального стартового стола, перенеся силовые функции последнего на ВПА ракеты, что значительно упрощает стартовые сооружения для систем типа «КОРОНА», и соответственно, снижаются затраты на их строительство.

Наиболее близким аналогом предлагаемого изобретения является многоразовая одноступенчатая ракета-носитель «КОРОНА» вертикального взлета и посадки, содержащая осесимметричный корпус с полезной нагрузкой, маршевую двигательную установку и взлетно-посадочные амортизаторы (см. А.В.Вавилин, Ю.Ю.Усолкин «О возможных путях развития многоразовых транспортных космических систем (МТКС)», РК техника, научно-технический сборник, серия XIY, выпуск 1 (48), часть П, расчет, экспериментальные исследования и проектирование баллистических ракет с подводным стартом, г. Миасс, 2002 г., стр.121, рис.1, стр.129, рис.2).

Недостатком конструкции ракеты-аналога является то, что ее ВПА расположены в зоне газодинамического и теплового воздействия пламени, выходящего из центрального сопла маршевой двигательной установки (МДУ) при многократном старте и посадке ракеты, в результате чего не обеспечивается надежная работа конструкции одного ВПА при требуемом ресурсе его использования (до ста полетов при двадцатипроцентном запасе по ресурсу).

Техническим результатом при использовании одноступенчатой многоразовой ракеты-носителя вертикального взлета и посадки является обеспечение требуемой надежности конструкции одного ВПА при пятидесятистократном использовании ракеты-носителя путем минимизации газодинамических и тепловых нагрузок на ВПА от работающей МДУ при многократных старте и посадках ракеты.

Сущность изобретения состоит в том, что в известной одноступенчатой многоразовой ракете-носителе вертикального взлета и посадки, содержащей осесимметричный корпус с полезной нагрузкой, маршевую двигательную установку и взлетно-посадочные амортизаторы, в ней между стойками взлетно-посадочных амортизаторов и соплом маршевого двигателя установлен теплозащитный экран.

По сравнению с ближайшей ракетой-аналогом предлагаемая одноступенчатая многоразовая ракета-носитель вертикального взлета и посадки обладает лучшими функционально-эксплуатационными возможностями, т.к. в ней обеспечивается необходимая надежность конструкции одного ВПА (не ниже 0,9994) при заданном сроке эксплуатации одной ракеты-носителя (до ста пусков) путем изоляции (с помощью теплозащитного экрана) стоек ВПА от газодинамических и тепловых нагрузок работающей МДУ при заданном ресурсе (до ста) полетов ракеты-носителя при его многократных старте и посадках.

Для пояснения технической сущности предлагаемого изобретения показана схема предлагаемой ракеты-носителя с осесимметричным корпусом 1, соплом 2 маршевой двигательной установки, стойками взлетно-посадочного амортизатора 3 и теплозащитным экраном 4 пустотелого тонкостенного отсека из теплостойкого материала, который изолирует стойки взлетно-посадочного амортизатора от газодинамического и теплового воздействия пламени из центрального сопла маршевой двигательной установки при взлете и посадке ракеты.

Таим образом, предлагаемая многоразовая ракета-носитель вертикального взлета и посадки обладает более широкими функционально-эсплуатационными возможностями по сравнению с ближайшим аналогом путем повышения надежности одного взлетно-посадочного амортизатора при заданном ресурсе полетов ракеты-носителя, на котором этот взлетно-посадочный амортизатор расположен.

Одноступенчатая многоразовая ракета-носитель вертикального взлета и посадки, содержащая осесимметричный корпус с полезной нагрузкой, маршевую двигательную установку и взлетно-посадочные амортизаторы, отличающаяся тем, что в ней между стойками взлетно-посадочных амортизаторов и соплом маршевого двигателя установлен теплозащитный экран, выполненный в виде пустотелого тонкостенного отсека из теплостойкого материала.

Разработка системы посадки - число опор их устройство при условии минимизации их массы очень сложная задача...

Posts from This Journal “Патенты” Tag


  • Подними передний мост!!!

    Отличная идея! Буквально недавно эта идея видел в роботизированной машинке и вот снова... Поворот на одной оси тоже прекрасен. Переход к…


  • Двигатель CTL Atkinson cycle

    Неплохо придумано! Громоздкий классический механизм Аткинсона заменен более компактным механизмом. Жалко даже из этой картинки не совсем…

  • Если ты изобретатель и не изобрел велосипед - грош тебе цена как изобретателю!

    Патент РФ 2452649 Рама велосипеда Захаров Андрей Андреевич Изобретение относится к однобалочным пластиковым рамам, снабженным элементами,…


  • ДВС CITS V-Twin и патент на него

    Clean Two-Stroke CITS V-Twin Engine Уже работает тестовый экземпляр Two stroke engine porting arrangement US 20130228158 A1 ABSTRACT A…


  • Фотонный лазерный двигатель

    Photonic Laser Thruster - оказывается название не из фантастики, а изделие вполне уже рабочее... Photonic Laser Thruster (PLT) is a pure photon…

Проект разработан по просьбе венчурного инвестора из ЕС.

Стоимость выведения на орбиту космических аппаратов пока очень велика. Это объясняется высокой стоимостью ракетных двигателей, дорогой системой управления, дорогими материалами, используемыми в напряженной конструкции ракет и их двигателей, сложной и, как правило, дорогостоящей технологией их изготовления, подготовки к пуску и, главным образом, их одноразовым использованием.

Доля стоимости носителя в общей стоимости запуска космического аппарата бывает разной. Если носитель серийный, а аппарат уникальный, то около 10%. Если наоборот - может достигать 40% и более. Это очень дорого, и поэтому возникла мысль, создать ракету-носитель, которая, подобно воздушному лайнеру, взлетала бы с космодрома, совершала полет на орбиту и, оставив там спутник или космический корабль, возвращалась на космодром.

Первой попыткой реализации такой идеи было создание системы «Спейс шаттл». На основании анализа недостатков одноразовых носителей и системы «Спейс шаттл», который сделан Константином Феоктистовым (К. Феоктистов. Траектория жизни. Москва: Вагриус, 2000. ISBN 5-264-00383-1. Глава 8. Ракета как самолет) , складывается представление о качествах, которыми должна обладать хорошая ракета-носитель, обеспечивающая доставку на орбиту полезного груза с минимальными затратами и с максимальной надежностью. Она должна быть системой многоразового использования, способной совершать 100–1000 полетов. Многоразовость нужна как для снижения затрат на каждый полет (расходы на разработку и изготовление распределяются на количество полетов), так и для повышения надежности выведения полезного груза на орбиту: каждая поездка на автомобиле и полет самолета подтверждают правильность его конструкции и качественное изготовление. Следовательно, можно снижать затраты на страхование полезного груза и страхование самой ракеты. По-настоящему надежными и недорогими в эксплуатации машинами могут быть только многоразовые - такие, как паровоз, автомобиль, самолет.

Ракета должна быть одноступенчатой. Это требование, как и многоразовость, связано и с минимизацией расходов, и с обеспечением надежности. Действительно, если ракета многоступенчатая, то даже если все ее ступени благополучно возвращаются на Землю, то перед каждым стартом их надо собирать в единое целое, а проверить правильность сборки и функционирования процессов разделения ступеней после сборки невозможно, так как при каждой проверке собранная машина должна рассыпаться. Не испытываемые, не проверяемые на функционирование после сборки, соединения становятся как бы одноразовыми. И пакет, соединенный узлами с пониженной надежностью, тоже становится в какой-то степени одноразовым. Если ракета многоступенчатая, то расходы на ее эксплуатацию больше, чем на эксплуатацию одноступенчатой машины по следующим причинам:

  • Для одноступенчатой машины не требуются расходы на сборку.
  • Не нужно выделять на поверхности Земли районы приземления для посадки первых ступеней, а следовательно, не нужно платить за их аренду, за то, что эти районы не используются в хозяйстве.
  • Нет необходимости платить за транспортировку первых ступеней к месту старта.
  • Заправка многоступенчатой ракеты требует более сложной технологии, большего времени. Сборка пакета и доставка ступеней к месту старта не поддаются простейшей автоматизации и, следовательно, требуют участия большего количества специалистов при подготовке такой ракеты к очередному полету.

Ракета должна использовать в качестве топлива водород и кислород, в результате горения которых на выходе из двигателя образуются экологически чистые продукты сгорания при высоком удельном импульсе. Экологическая чистота важна не только для работ, проводимых на старте, при заправке, в случае аварии, но и в не меньшей степени во избежание вредного воздействия продуктов сгорания на озоновый слой атмосферы.

Среди самых проработанных проектов одноступенчатых космических аппаратов за рубежом стоит выделить Skylon, DC-X, Lockheed Martin X-33 и Roton. Если Skylon и X-33 - это крылатые аппараты, то DC-X и Roton это ракеты вертикального взлета и вертикальной посадки. К тому же, оба они дошли до создания тестовых образцов. Если у Roton был только атмосферный прототип для отработки посадки на авторотации, то прототип DC-X совершил несколько полетов на высоту несколько километров на жидкостном ракетном двигателе (ЖРД) на жидких кислороде и водороде.

Техническое описание ракеты «Зея»

Для радикального снижения стоимости выведения грузов в космос «Лин Индастриал» предлагает создать ракету-носитель (РН) «Зея». Это одноступенчатая, многоразовая транспортная система с вертикальным взлетом и вертикальной посадкой. В ней используются экологически безопасные и высокоэффективные компоненты топлива: окислитель - жидкий кислород, горючее - жидкий водород.

РН состоит из бака окислителя (над которым размещается теплозащитный экран для входа в атмосферу и ротор системы мягкой посадки), отсека полезной нагрузки, приборного отсека, бака горючего, хвостового отсека с двигательной установкой и посадочного устройства. Баки горючего и окислителя - сегментально-конические, несущие, композитные. Наддув бака горючего осуществляется за счет газификации жидкого водорода, а бака окислителя - за счет сжатого гелия из баллонов высокого давления. Маршевая двигательная установка состоит из 36 расположенных по окружности двигателей и сопла внешнего расширения в виде центрального тела. Управление во время работы маршевого двигателя по тангажу и рысканию осуществляется с помощью дросселирования диаметрально расположенных двигателей, по крену - с помощью восьми двигателей на газообразных компонентах топлива, расположенных под отсеком полезной нагрузки. Для управления на участке орбитального полета используются двигатели на газообразных компонентах топлива.

Схема полета «Зеи» следующая. После выхода на опорную околоземную орбиту, ракета, если это необходимо, производит орбитальные маневры для выхода на целевую орбиту, после чего, открыв отсек полезной нагрузки (массой до 200 кг), отделяет ее.

В течение одного витка по околоземной орбите с момента старта, выдав тормозной импульс, «Зея» совершает посадку в районе космодрома пуска. Высокая точность посадки обеспечивается за счет использования аэродинамического качества, создаваемого формой ракеты, для бокового маневра и маневра по дальности. Мягкая посадка осуществляется за счет снижения с использованием принципа авторотации и восьми посадочных амортизаторов.

Экономика

Ниже приведена оценка сроков и стоимости работы до первого пуска:

  • Аванпроект: 2 месяца - €2 млн
  • Создание двигательной установки, разработка композитных баков и системы управления: 12 месяцев - €100 млн
  • Создание стендовой базы, постройка прототипов, подготовка и модернизация производства, эскизный проект: 12 месяцев - €70 млн
  • Отработка узлов и систем, испытания прототипа, огневые испытания летного изделия, технический проект: 12 месяцев - €143 млн

Итого: 3,2 года, €315 млн

По нашим оценкам, себестоимость одного пуска составит €0,15 млн, а стоимость межполетного обслуживания и накладных расходов - около €0,1 млн за межпусковой период. Если установить цену запуска в €35 тыс. за 1 кг (при себестоимости €1250/кг), что близко к цене запуска на ракете «Днепр» для иностранных заказчиков, то весь пуск (200 кг полезной нагрузки) обойдется заказчику в €7 млн. Таким образом, проект окупится за 47 пусков.

Вариант «Зеи» с двигателем на трех компонентах топлива

Еще один способ увеличить эффективность одноступенчатой РН - переход на ЖРД с тремя компонентами топлива.

С начала 1970-х годов в СССР и США изучалась концепция трехкомпонентных двигателей, которые сочетали бы в себе высокое значение удельного импульса при использовании водорода в качестве горючего, и более высокую усредненную плотность топлива (а, следовательно, меньший объем и вес топливных баков), характерную для углеводородного горючего. При запуске такой двигатель работал бы на кислороде и керосине, а на больших высотах переключался на использование жидких кислорода и водорода. Такой подход, возможно, позволит создать одноступенчатый космический носитель.

В нашей стране были разработаны трехкомпонентные двигатели РД-701, РД-704 и РД0750, однако они не были доведены до стадии создания опытных образцов. НПО «Молния» в 1980-х разработала Многоцелевую авиационно-космическую систему (МАКС) на ЖРД РД-701 с топливом кислород + керосин + водород. Расчеты и конструирование трехкомпонентных ЖРД велись и в Америке (см., например, Dual-Fuel Propulsion: Why it Works, Possible Engines, and Results of Vehicle Studies, авторов James A. Martin и Alan W. Wilhite, опубликованную в мае 1979 года в Am erican Institute of Aeronautics and Astronautics (AIAA) Paper No. 79-0878).

Мы полагаем, что для трехкомпонентной «Зеи» вместо традиционно предлагаемого для подобных ЖРД керосина следует использовать жидкий метан. На это есть множество причин:

  • «Зея» в качестве окислителя использует жидкий кислород, кипящий при температуре -183 градуса Цельсия, то есть в конструкции ракеты и заправочного комплекса уже используется криогенное оборудование, а значит не будет принципиальных сложностей в замене бака керосина на бак метана при -162 градусах Цельсия.
  • Метан по эффективности превосходит керосин. Удельный импульс (УИ, мера эффективности ЖРД - отношение создаваемого двигателем импульса к расходу топлива) топливной пары метан + жидкий кислород превосходит УИ пары керосин + жидкий кислород примерно на 100 м/с.
  • Метан дешевле керосина.
  • В отличие от керосиновых в двигателях на метане почти отсутствует коксование, то есть, проще говоря, образование трудно удаляемого нагара. А, значит, такие двигатели удобнее использовать в многоразовых системах.
  • При необходимости метан можно заменить схожим по характеристикам сжиженным природным газом (СПГ). СПГ почти полностью состоит из метана, обладает схожими физико-химическими характеристиками и немного проигрывает чистому метану по эффективности. При этом СПГ в 1,5–2 раза дешевле керосина и намного доступнее. Дело в том, что Россия покрыта обширной сетью газопроводов с природным газом. Достаточно отвести ветку к космодрому и построить небольшой комплекс по сжижению газа. Также в России построен завод по производству СПГ на Сахалине и два малотоннажных комплекса по сжижению в Санкт-Петербурге. Планируется постройка еще пяти заводов в разных точках РФ. При этом для производства ракетного керосина нужны особые сорта нефти, добытые на строго определенных месторождениях, запасы которых в России истощаются.

Схема работы трехкомпонентной РН следующая. Вначале сжигается метан - топливо с высокой плотностью, но сравнительно небольшим удельным импульсом в пустоте. Затем сжигается водород - топливо с низкой плотностью и максимально высоким удельным импульсом. Оба вида топлива сжигаются в единой двигательной установке. Чем выше доля топлива первого типа, тем меньше масса конструкции, но тем больше масса топлива. Соответственно, чем выше доля топлива второго вида, тем меньше потребный запас топлива, но тем больше масса конструкции. Следовательно, можно найти оптимальное соотношение между массами жидких метана и водорода.

Мы провели соответствующие расчеты, приняв коэффициент топливных отсеков для водорода равным 0,1, а для метана - 0,05. Коэффициент топливных отсеков - это отношение конечной массы топливного отсека к массе располагаемого запаса топлива. В конечную массу топливного отсека включаются массы гарантийного запаса топлива, невырабатываемые остатки компонентов ракетного топлива и масса газов наддува.

Расчеты показали, что трехкомпонентная «Зея» будет выводить на низкую околоземную орбиту 200 кг полезной нагрузки при массе своей конструкции в 2,1 т и стартовой массе 19,2 т. Двухкомпонентная «Зея» на жидком водороде сильно проигрывает: масса конструкции - 4,8 т, а стартовая масса - 37,8 т.

Понравилась статья? Поделиться с друзьями: