Что такое нефть? Химическая формула нефти.

Полезное ископаемое, представляющее из себя маслянистую жидкость. Это горючее вещество, часто черного цвета, хотя цвета нефти в разных районах различаются. Она может быть и коричневой, и вишневой, зеленой, желтой, и даже прозрачной. С химической точки зрения нефть - это сложная смесь углеводородов с примесью различных соединений, например, серы, азота и других. Ее запах также может быть различным, так как зависит от присутствия в ее составе ароматических углеводородов, сернистых соединений.

Углеводороды , из которых состоит нефть, - это химические соединения состоящие из атомов углерода (C) и водорода (H). В общем виде формула углеводорода - C x H y . Простейший углеводород, метан, имеет один атом углерода и четыре атома водорода, его формула - CH 4 (схематично он изображен справа). Метан - легкий углеводород, всегда присутствует в нефти.

В зависимости от количественного соотношения различных углеводородов, составляющих нефть, ее свойства также различаются. Нефть бывает прозрачной и текучей как вода. А бывает черной и настолько вязкой и малоподвижной, что не вытекает из сосуда, даже если его перевернуть.

С химической точки зрения обычная (традиционная) нефть состоит из следующих элементов:

  • Углерод – 84%
  • Водород – 14%
  • Сера – 1-3% (в виде сульфидов, дисульфидов, сероводорода и серы как таковой)
  • Азот – менее 1%
  • Кислород – менее 1%
  • Металлы – менее 1% (железо, никель, ванадий, медь, хром, кобальт, молибден и др.)
  • Соли – менее 1% (хлорид кальция, хлорид магния, хлорид натрия и др.)

Нефть (и сопутствующий ей углеводородный газ) залегает на глубинах от нескольких десятков метров до 5-6 километров. При этом на глубинах 6 км и ниже встречается только газ, а на глубинах 1 км и выше - только нефть. Большинство продуктивных пластов находятся на глубине между 1 и 6 км, где нефть и газ встречаются в различных сочетаниях.

Залегает нефть в горных породах называемых коллекторами. Пласт-коллектор - это горная порода способная вмещать в себе флюиды, т.е. подвижные вещества (это могут быть нефть, газ, вода). Упрощенно коллектор можно представить как очень твердую и плотную губку, в порах которой и содержится нефть.

ПРОИСХОЖДЕНИЕ НЕФТИ

Образование нефти – процесс весьма и весьма длительный. Он проходит в несколько стадий и занимает по некоторым оценкам 50-350 млн. лет.

Наиболее доказанной и общепризнанной на сегодняшний день является теория органического происхождения нефти или, как ее еще называют, биогенная теория. Согласно этой теории нефть образовалась из останков микроорганизмов, живших миллионы лет назад в обширных водных бассейнах (преимущественно на мелководье). Отмирая, эти микроорганизмы образовывали на дне слои с высоким содержанием органического вещества. Слои, постепенно погружаясь все глубже и глубже (напомню, процесс занимает миллионы лет), испытывали воздействие усиливающегося давления верхних слоев и повышения температуры. В результате биохимических процессов, происходящих без доступа кислорода, органическое вещество преобразовывалось в углеводороды.

Часть образовавшихся углеводородов находилась в газообразном состоянии (самые легкие), часть в жидком (более тяжелые) и какая-то часть в твердом. Соответственно подвижная смесь углеводородов в газообразном и жидком состоянии под воздействием давления постепенно двигалась сквозь проницаемые горные породы в сторону меньшего давления (как правило, вверх). Движение продолжалось до тех пор, пока на их пути не встретилась толща непроницаемых пластов и дальнейшее движение оказалось невозможным. Это так называемая ловушка , образуемая пластом-коллектором и покрывающим ее непроницаемым пластом-покрышкой (рисунок справа). В этой ловушке смесь углеводородов постепенно скапливалась, образовывая то, что мы называем месторождением нефти . Как видите, месторождение на самом деле не является местом рождения . Это скорее местоскопление . Но, как бы там ни было, практика названий уже сложилась.

Поскольку плотность нефти, как правило, значительно меньше плотности воды, которая в ней всегда присутствует (свидетельство ее морского происхождения), нефть неизменно перемещается вверх и скапливается выше воды. Если присутствует газ, он будет на самом верху, выше нефти.

В некоторых районах нефть и углеводородный газ, не встретив на своем пути ловушку, выходили на поверхность земли. Здесь они подвергались воздействию различных поверхностных факторов, в результате чего рассеивались и разрушались.

ИСТОРИЯ НЕФТИ

Нефть известна человеку с древнейших времен. Люди уже давно обратили внимание на черную жидкость, сочившуюся из-под земли. Есть данные, что уже 6500 лет назад люди, жившие на территории современного Ирака, добавляли нефть в строительный и цементирующий материал при строительстве домов, чтобы защитить свои жилища от проникновения влаги. Древние египтяне собирали нефть с поверхности воды и использовали ее в строительстве и для освещения. Нефть также использовалась для герметизации лодок и как составная часть мумифицирующего вещества.

Во времена древнего Вавилона на Ближнем Востоке велась довольно интенсивная торговля этим «черным золотом». Некоторые города уже тогда буквально вырастали на торговле нефтью. Одно из семи чудес света, знаменитые Висячие сады Серамиды (по другой версии - Висячие сады Вавилона ), также не обошлись без использования нефти в качестве герметизирующего материала.

Не везде нефть собирали только с поверхности. В Китае более 2000 лет назад при помощи стволов бамбука с металлическим наконечником бурили небольшие скважины. Изначально скважины предназначались для добычи соленой воды, из которой извлекалась соль. Но при бурении на бОльшую глубину из скважин добывали нефть и газ. Неизвестно нашла ли нефть применение в древнем Китае, известно только, что газ поджигали для выпаривания воды и извлечения соли.

Примерно 750 лет назад известный путешественник Марко Поло в описании своих путешествий на Восток упоминает использование нефти жителями Апшеронского полуострова в качестве лекарства от кожных болезней и топлива для освещения.

Первые упоминания о нефти на территории России относятся к XV веку. Нефть собирали с поверхности воды на реке Ухта. Также как и другие народы, здесь ее использовали в качестве лекарственного средства и для хозяйственных нужд.

Хотя, как мы видим, нефть была известна с древнейших времен, она находила довольно ограниченное применение. Современная история нефти начинается с 1853 года, когда польский химик Игнатий Лукасевич изобрел безопасную и удобную в обращении керосиновую лампу. Он же по данным некоторых источников открыл способ извлекать из нефти керосин в промышленных масштабах и основал в 1856 году нефтеперегонный завод в окрестностях польского города Ulaszowice.

Еще в 1846 году канадский химик Абрахам Геснер придумал, как получать керосин из угля. Но нефть позволяла получать более дешевый керосин и в гораздо большем количестве. Растущий спрос на керосин, использовавшийся для освещения, породил спрос на исходный материал. Так было положено начало нефтедобывающей промышленности.

По данным некоторых источников первая в мире нефтяная скважина была пробурена в 1847 году в районе города Баку на берегу Каспийского моря. Вскоре после этого в Баку, входящем в то время в состав Российской империи, было пробурено столько нефтяных скважин, что его стали называть Черный город.

Тем не менее, рождением российской нефтяной промышленности принято считать 1864 год. Осенью 1864 года в Кубанской области был осуществлен переход от ручного способа бурения нефтяных скважин к механическому ударно-штанговому с использованием паровой машины в качестве привода бурового станка. Переход к этому способу бурения нефтяных скважин подтвердил свою высокую эффективность 3 февраля 1866 года, когда было закончено бурение скважины 1 на Кудакинском промысле и из нее забил фонтан нефти. Это был первый в России и на Кавказе фонтан нефти.

Датой начала промышленной мировой нефтедобычи , по данным большинства источников, принято считать 27 августа 1859 года. Это день, когда из пробуренной «полковником» Эдвином Дрейком первой в США нефтяной скважины был получен приток нефти с зафиксированным дебитом. Эта скважина глубиной 21,2 метра была пробурена Дрейком в городе Тайтусвиль, штат Пенсильвания, где бурение водяных скважин часто сопровождалось проявлениями нефти.

Новость об открытии нового источника нефти с помощью бурения скважины разнеслась по округе Тайтусвиля со скоростью лесного пожара. К тому времени переработка, опыт обращения с керосином и подходящий тип лампы для освещения уже были отработаны. Бурение нефтяной скважины позволило получить достаточно дешевый доступ к необходимому сырью, дополнив, таким образом, последний элемент в зарождение нефтяной отрасли.

Нефть - ресурс, который лежит в основе современной энергетики. Многие страны прикладывают массу усилий для поиска нового вида топлива, однако, на сегодняшний день и на ближайшее будущее именно нефтепродукты занимают эту нишу. Несмотря на то, что не один выпуск новостей не обходится без упоминания текущей цены на нефть или иных вещей, связанных с ней, очень многие люди не знают, что такое нефть на самом деле. В этом материале мы расскажем о том, какая химическая формула нефти, и из каких элементов она состоит.

История

Стоит заметить, что с нефтью человек познакомился еще во времена Вавилона. Тогда этот ресурс применялся в строительстве из-за его вяжущих качеств. В России на реке Ухте люди собрали нефть с поверхности и использовали в качестве мази. Лишь спустя века, когда были проведены серьезные исследования, человечество узнало химический состав нефти и ее истинное предназначение. Однако и сегодня на вопрос о том, из чего состоит нефть нельзя ответить односложно.

Химическая формула нефти

Формула нефти

Нефть - сложная коллоидная химическая система, состоящая из множества компонентов. Жидкая фаза нефти представляет собой жидкие углеводороды (порядка пяти сотен различных веществ). Также «черное золото» содержит полу-твердые элементы - «тяжелые» углеводороды (например, смолы), которые взвешены в жидкости.

Помимо углеводородной смеси, нефть включает в себя серу, азот, минеральные соли, воду, растворы углеводородных газов.

Стоит заметить, что сырье, добываемое из разных источников, отличается по химическому составу. Каждая нефть - уникальная система, поэтому принята классификация нефти, в зависимости от состава. Чем выше содержание легких углеводородов и меньше содержание механических примесей, серы и других побочных элементов, тем выше ценность конкретного вида «черного золота».

Нефть как природное ископаемое известна всем со школьной скамьи. Но не каждый знает, из чего она состоит, как добывается и где используется. Что такое нефть? Это смесь углеродов в жидком состоянии, имеющая сложную структуру и насыщенная газообразными и прочими веществами. Из нее производят несколько тысяч разновидностей различных продуктов.

Месторождения сырой нефти расположены глубоко под землей. После добычи ее перегоняют, удаляя тем самым из нее ненужные примеси.

Нефть - это маслянистая жидкость, имеющая горючие свойства. Она обладает специфическим запахом. Цвет у нефти может быть разный. Он зависит от ее состава, района добычи и может варьировать от бесцветного до черного. Традиционным для этого ископаемого является коричневый цвет с немного зеленоватым оттенком.

Что такое нефть, мы выяснили, теперь разберем ее состав. Основную долю нефтяной структуры составляет примерно 80-87 процентов. От 11 до 15 процентов в занимает водород. Кроме этого, в ней присутствует сера, азот, кислород, кобальт, никель, алюминий, железо, барий, марганец и некоторые другие химические элементы. Их доля в общей массе незначительна. Все элементы образуют соединения органического и неорганического характера.

Говоря о том, что такое нефть, нельзя не упомянуть о ее свойствах. Самым главным из них, которое человечество использует в большей мере, является способность выделять большое количество тепла при сгорании. Нефть - это один из главных энергоносителей. Продукты, которые производят из нее, имеют наивысший показатель теплоты сгорания.

Используя свойство нефти, как и любой другой жидкости, испаряться при кипении, из нее выделяют различные фракции. Нефть имеет в своем составе различные компоненты, которые переходят в газообразное состояние при различных температурах. При 200 градусах выделяются углеводороды, относящиеся к бензиновой фракции, при 250 - лигроиновые углероды. При 250-315 градусах выделяются углероды керосиново-газойлевой фракции, а при 350 - масляные углероды. После выделения всех главных фракций остается гудрон.

Что такое нефть, люди знали еще за несколько тысяч лет Древние египтяне использовали ее как лекарство и как строительный материал. В средние века из нее научились получать керосин.

Первоначально люди использовали только ту нефть, которая находилась на поверхности. Затем с изобретением двигателя стали бурить скважины и поднимать нефть на поверхность из недр земли.

Современная добыча этого ископаемого полностью автоматизирована. По всему миру проложены тысячи километров нефтепроводов. Так как нефть очень густая, ее прогоняют по трубам специальные насосы.

Есть две Согласно версии биогенного происхождения, нефть - это останки животных и растительных организмов. Они преобразовались в в эту жидкость в течение многих миллионов лет. Сторонники абиогенной версии предполагают неорганическое происхождение этого ископаемого.

Состав нефти и ее качество зависит и от расположения месторождения. Нефть, добытая в районе Баку, имеет много циклопарафинов и мало предельных углеродов. Грозненская нефть, напротив, богата предельными углеродами. Северная нефть содержит ароматические углероды в больших количествах.

Нефть, наряду с газом, остается основным сырьем и источником энергии для человечества. Продукты, производимые из нее, используются во всех отраслях народного хозяйства. В связи с активной разработкой месторождений и спросом на нефть сегодня ее запасы сильно истощены. Поэтому следует более рационально использовать добытые ресурсы, повышать эффективность переработки этого ископаемого, искать новые месторождения и пути с больших глубин.

Химический состав нефти довольно сложен и зависит от ряда факторов, таких как: условия образования и происхождение залежей, их географическое месторасположение, глубина залегания и др. В среднем в состав нефти входит около 1000 индивидуальных соединений.

Основными соединениями нефти (до 90%) являются углеводороды с молекулярной массой 220 - 400 г/моль (иногда до 500 г/моль), большинство из которых имеет жидкое агрегатное состояние. Попутный нефтяной газ (ПНГ), растворенный в нефти, также в основном состоит из низших предельных углеводородов - главным образом, из пропана и изомеров бутана.

Кроме углеводородов, в состав нефти входят гетероатомные соединения , содержащие в своей структуре как органическую составляющую, так и неорганические элементы, в том числе металлы. Так, например, специфический запах и цвет в основном обусловлены присутствием азот-, серо- и кислородсодержащих соединений, в то время как большинство углеводородов в химическом составе нефти, за исключением ароматических, в чистом виде лишены запаха и цвета.

В химический состав нефти входит ряд неорганических веществ . В первую очередь это вода , содержание которой иногда доходит до 10%, а также некоторое количество растворенных в ней минеральных солей .

В таблице ниже приведен стандартный химический состав нефти:

Вещество ©сайт Содержание
Жидкие углеводороды Алканы (парафины) 30 - 50% 80 - 90% (более 500 соединений)
Циклоалканы (нафтены) 25 - 75%
Арены (ароматические углеводороды) 10 - 50%
Серосодержащие Сероводород Около 250 соединений 4- 5%
Меркаптаны
Моно- и дисульфиды
Тиофены
Тиофаны
Полициклические соединения (преимущественно в мазуте и гудроне)
Азотосодержащие Гомологи пиридина, хинола, индола, карбазола, пиррола Более 30 соединений
Порфирины (преимущественно в тяжелых фракциях и остатках)
Кислородсодержащие Нафтеновые кислоты Около 85 соединений
Фенолы
Смолисто-асфальтеновые вещества
Металлорганические Ванадиевые
Никелевые
Растворенные углеводородные газы до 4%
Вода до 10%
Минеральные соли В основном хлориды 0.1 - 4000 мг/л
Растворы солей органических кислот
Механические примеси

Углеводороды

Углеводороды в нефти представляют три основные класса:

  • Алканы (насыщенные углеводороды, или парафины)
  • Циклоалканы (по-другому - нафтены)
  • Ароматические углеводороды (арены).

Гетероатомные органические соединения

Гетероатомные органические соединения нефти представлены следующими группами:

  • Сернистые соединения
  • Кислородные соединения
  • Азотосодержащие соединения
  • Смолисто-асфальтеновые вещества
  • Другие элементорганические соединения

Минеральные соли

Сырая нефть может содержать до 15 кг/т минеральных солей . Как правило, основные минеральные соли - это хлориды, гидрокарбонаты, йодиды, бромиды, преимущественно, щелочных и щелочноземельных металлов.В результате гидролиза таких солей образуется HCl, которая в свою очередь вызывает коррозию аппаратуры. Поэтому при поставке сырой нефти на нефтеперерабатывающее предприятие, вводят ограничение на содержание солей до 50 мг/л, а на перегонку - не более 5 мг/л.

Вода и механические примеси

В процессе добычи нефти, на поверхность также поступает пластовая (или "нефтяная") вода. В среднем сырая нефть содержит около 200 - 300 кг/т воды. При этом ее содержание с момента начала добычи постепенно увеличивается, порой достигая к концу эксплуатации скважины 90-98%.

Вода в нефти содержится как в чистом виде, так и в форме эмульсий, поэтому ее отделение проводят в два этапа. Основную массу воды отстаивают в специальных отстойных резервуарах, а для отделения эмульсий нефть обрабатывают специальными деэмульгаторами. Окончательное обезвоживание и обессоливание нефти проводят на специальных установках подготовки нефти (УНП) и электрообезвоживающих, обессоливающих установках (ЭЛОУ). Последние как правило сопряжены с блоком первичной перегонки нефти - атмосферно-вакуумной трубчаткой (ЭЛОУ - АВТ).

Механические примеси нефти представляют собой взвешенные частицы песка, известняка и глины.

Попутный нефтяной газ

Попутный нефтяной газ (ПНГ) - смесь газообразных низших предельных углеводородов, растворенных в нефти, которые в свою очередь могут растворять предельные углеводороды с большим числом атомов углерода, а также бензол и толуол. Кроме этого ПНГ может содержать углекислый газ, азот и сероводород. Содержание ПНГ в нефти может достигать 100 м 3 /т.

В процессе добычи, сырую нефть подают в специальные трапы-сепараторы, где ПНГ отделяют путем последовательного снижения давления. Увлеченный вместе с газом конденсат отделяют в промежуточных приемниках. Далее ПНГ отправляют на газоперерабатывающий завод. После таких процедур в нефти, тем не менее, остается около 4% растворенных газов, которые высвобождаются в процессе перегонки.

Главные элементы, из которых состоят компоненты нефти – углерод и водород. Содержание углерода и водорода в различных нефтях колеблется в сравнительно узких пределах и составляет в среднем для углерода 83,5-87% масс., для водорода 11,5-14% масс. По высокому содержанию водорода нефть занимает исключительное положение среди остальных каустобиолитов. В гумусовых углях содержание водорода в среднем 5% масс., в твердых сапропелитовых образованиях – 8% масс. Повышенное содержание водорода объясняет жидкое состояние нефти.

Наряду с углеродом и водородом во всех нефтях присутствуют сера, кислород и азот. Азота в нефтях от 0.001-0,3 до 1,8% масс. Содержание кислорода колеблется в пределах 0,1-1,0% масс. Однако в некоторых высокосмолистых нефтях оно может быть и выше.

Значительно отличаются нефти по содержанию серы. В нефтях многих месторождений серы сравнительно мало 0,1-1,0% масс. Но доля сернистых нефтей с содержанием серы от 1 до 3% масс. в последнее время значительно возросла. Существуют и сильно осерненные нефти с содержанием серы выше 3% масс.

В очень малых количествах в нефтях присутствуют другие элементы, главным образом, металлы (ванадий, никель, магний, хром, титан, кобальт, калий, кальций, натрий и др.). Обнаружены также фосфор и кремний. Содержание этих элементов выражается незначительными долями процента. В различных нефтепродуктах был найден германий с содержанием 0,15 - 0,19 г/т.

В соответствии с элементным составом основная масса компонентов нефти – углеводороды. В низкомолекулярной части нефти, к которой мы условно можем отнести вещества с молекулярной массой не более 250 - 300 и перегоняющиеся до 300-350 о С, присутствуют наиболее простые по строению углеводороды. Они принадлежат к следующим гомологическим рядам:

С п Н 2п+2 – парафины, метановые углеводороды, алканы;

С п Н 2п - циклопарафины, моноциклические полиметиленовые

углеводороды, нафтены, цикланы (алкилциклопентаны и алкилциклогексаны);

С п Н 2п-2 - дициклопарафины, бициклические полиметиленовые

углеводороды (пятичленные, шестичленные и смешанные);

С п Н 2п-4 – трициклопарафины, трициклические полиметиленовые углеводороды (пятичленные, шестичленные и смешанные);

С п Н 2п-6 – моноциклические ароматические углеводороды, бензольные углеводороды, арены;

С п Н 2п-8 – бициклические смешанные нафтено-ароматические углеводороды;

С п Н 2п-12 – бициклические ароматические углеводороды.

В бензиновой фракции практически присутствуют только три класса углеводородов: алканы, цикланы и ароматические ряда бензола. В керосиновой

и газойлевой фракциях значительную долю составляют би- и трициклические углеводороды.

Непредельных углеводородов с ненасыщенными связями в цепи, как правило, в сырых нефтях нет. Имеются отдельные нефти с незначительным содержанием непредельных углеводородов (Бредфорд, США).

Помимо углеводородов в низкомолекулярной части нефти присутствуют: - кислородные соединения – нафтеновые кислоты, фенолы;

Сернистые соединения – меркаптаны, сульфиды, дисульфиды, тиофены;

Азотистые соединения – пиридиновые основания и амины.

Количество всех этих гетероатомных веществ, перегоняющихся в пределах 300-350 о С невелико, так как основная масса кислорода, серы и азота концентрируется в высокомолекулярной части нефти.

При заводской перегонке сернистых нефтей, вследствие термического разложения сложных гетероатомных соединений, в товарных светлых дистиллятах может накопиться до 5% масс. и более низкомолекулярных сернистых соединений.

При оценке содержания гетероатомных соединений надо учитывать, что в сернистых, кислородных и азотистых соединениях сера, кислород и азот связаны с различными углеводородными радикалами и на 1ч (масс.) этих элементов приходится 10 - 20 ч (масс.) углерода и водорода.

Мало изучен химический состав высокомолекулярной части нефти, к которой условно относят вещества, перегоняющиеся выше 350 о С. Речь идет о мазуте, масляных фракциях и гудроне. Молекулярная масса компонентов этой части нефти колеблется от 300 до 1000. Эта часть нефти представляет собой смесь веществ разнообразного состава и строения.

Основные типы соединений, входящие в эту смесь:

Высокомолекулярные парафиновые углеводороды С п Н 2п+2;

Моно- и полициклические циклопарафиновые углеводороды с длинными или короткими боковыми парафиновыми цепями от С п Н 2п до С п Н 2п-10 ;

Моно- и полициклические ароматические углеводороды с боковыми парафиновыми цепями от С п Н 2п-6 до С п Н 2п-36 ;

Смешанные (гибридные) полициклические нафтено-ароматические углеводороды с боковыми парафиновыми цепями от С п Н 2п-8 до С п Н 2п-22 ;

Разнообразные органические соединения полициклического гибридного характера, молекулы которых состоят из чисто углеродных колец, циклов, содержащих гетероатомы – серу, кислород или азот, а также длинных или коротких парафиновых цепей;

Смолисто-асфальтеновые вещества – смолы и асфальтены; эти наиболее сложные по строению вещества нефти характеризуются полициклическим строением и обязательным присутствием кислорода, в них также концентрируется основная масса азота и металлов; содержание смол в некоторых нефтях доходит до 30-40%масс.

Основные типы соединений, входящие в нефть. Парафиновые углеводороды. Углеводороды этого класса органических соединений присутствуют во всех нефтях и являются одной из основных составных ее частей. Распределяются они по фракциям неравномерно, концентрируясь в нефтяных газах и бензиново-керосиновых фракциях. В масляных дистиллятах их содержание резко падает. Для некоторых нефтей характерно полное отсутствие парафинов в высококипящих фракциях.

Газообразные углеводороды метан, этан, пропан, бутан, изобутан, 2,2-диметилпропан при нормальных условиях находятся в газообразном состоянии. Все они входят в состав природных и нефтяных попутных газов.

Газы нефтяных месторождений называются попутными нефтяными газами. Эти газы растворены в нефти и выделяются из нее при выходе на поверхность. Состав нефтяных попутных газов отличается от сухих содержанием этана, пропана, бутанов и высших углеводородов.

Жидкие углеводороды. По своим температурам кипения углеводороды от пентана до декана и все их изомеры должны попасть при разгонке нефти в бензиновый дистиллят.

Твердые углеводороды. Твердые парафины в нефтях находятся в растворенном или взвешенном кристаллическом состоянии. В парафинистых и высокопарафинистых нефтях их содержание повышается до 10-20% масс. При перегонке мазута в масляные фракции попадают парафины, имеющие состав С 18 -С 35 . В гудронах концентрируются более высокоплавкие углеводороды С 36 -С 53 – церезины.

Присутствие твердых углеводородов в смазочных и специальных маслах недопустимо, так как они повышают температуру застывания и уменьшают подвижность масел при низких температурах. Поэтому масла подвергают специальной очистке – депарафинизации.

Метановые углеводороды относятся к ряду С„Н 2п+2 , они занимают исключительно важное место среди углеводородов нефти. Так, при­родные газы представлены исключительно метановыми углеводоро­дами и чаще всего почти целиком самим метаном. Легкие фракции лю­бых жидких нефтей также почти целиком состоят из метановых угле­водородов. Правда, по мере повышения среднего молекулярного веса фракций нефти содержание в них метановых углеводородов резко уменьшается. В средних фракциях, выкипающих в пределах 200- -300° С, метановых углеводородов содержится обычно уже не более 25-33%, а к 500° С метановые углеводороды нефти практически полностью выклиниваются. В высших фракциях нефти метановые углеводороды представляют собой твердые вещества - парафин и час­тично церезин. Кроме того, большое влияние на структуру и свой­ства сложных полиметиленовых, ароматических и так называемых гибридных углеводородов оказывают боковые цепи из радикалов ме­танового ряда.

ВЫВОД: В конкретных нефтях метановых углеводородов может содержаться больше или меньше. В общем очевидно, что метановые углеводороды составляют основу большинства природных газов и легких фракций жидкой нефти, что заслуживает особого внимания, так как именно эти составляющие в наибольшей мере являются исходными веществами для современного органического и нефтехимического синтеза.

Нафтеновые.

Циклоалканы (С п Н 2п) - нафтеновые углеводороды - входят в состав всех фракций нефтей, кроме газов. В среднем в нефтях различных типов они содержатся от 25 до 80% масс. Бензиновые и керосиновые фракции представлены в основном гомологами циклопентана и циклогексана, преимущественно с короткими (С 1 - С З) алкилзамещенными цикланами. Высококипящие фракции содержат преимущественно полициклические гомологи цикланов с 2 - 4одинаковыми или разными цикланами сочлененного или конденсированного типа строения. Распределение цикланов по фракциям нефти самое разнообразное. Их содержание растет по мере утяжеления фракций и только в наиболее высококипящих масляных фракциях падает. Можно отметить следующее распределение изомеров цикланов: среди С 7 - циклопентанов преобладают 1,2 - и 1,3-диметилзамещенные; С 8 - циклопентаны представлены преимущественно триметилзамещенными; среди алкилциклогексанов преобладает доля ди- и триметилзамещенных, не содержащих четвертичного атома углерода.

Под нафтеновыми углеводородами стали понимать не только моноциклические, но и полициклические полиметиленовые углеводороды нефтяного происхождения.

Нафтены входят в состав всех нефтей и присутствуют во всех фракциях. Их содержание растет по мере утяжеления фракций. Только в наиболее высококипящих масляных фракциях их количество уменьшается за счет увеличения ароматических структур.

Моноциклические нафтены представлены циклопентановыми и циклогексановыми структурами. В бензиновых и керосиновых фракциях обнаружено более 80 индивидуальных представителей этого класса углеводородов состава С 5 -С 12 . В относительно больших количествах в нефтях присутствуют: метилциклогексан, циклогексан, метилциклопентан, некоторые диметильные гомологи циклопентана. В незначительных количествах обнаружены циклогептан и метилциклогептан. Во фракциях выше 200 о С присутствуют бициклические и полициклические нафтены с числом циклов не более шести.

ВЫВОД: Нафтеновые углеводороды являются наиболее высококачественной составной частью моторных топлив и смазочных масел. Моноциклические нафтеновые углеводороды придают автобензинам, реактивным и дизельным топливам высокие эксплуатационные свойства и являются более качественным сырьем в процессах каталитического риформинга.

Ароматические углеводороды .

Арены представлены в нефти моноциклическими и полициклическими. Обычно нефти содержат 15-20% аренов. В ароматических (смолистых) нефтях их содержание доходит до 35%. В зависимости от распределения ароматических углеводородов по фракциям нефти можно подразделить на три группы:

    нафтено-ароматические - нефти, ароматические углеводороды которых (в основном, полициклические) концентрируются в высших фракциях. Это тяжелые смолистые нефти с плотностью > 0,9;

    нафтеновые - нефти, ароматические углеводороды которых концентрируются в основном в средних фракциях. Плотность таких нефтей 0,85-0,9;

3) парафинистые нефти - нефти, ароматические углеводороды которых сконцентрированы в легких фракциях (до 300°С).

Во фракциях до 200°С (бензиновые фракции) содержатся только гомологи бензола. В нефтях найдены все гомологи бензола, включая С9. Монозамещенные гомологи бензола, содержащие 4 и более атомов углерода в боковой цепи, встречаются редко. Наиболее распространенными являются толуол, этилбензол, ксилолы (м-ксилол преобладает как более термодинамически устойчивый), затем триметилбензолы, далее идут кумол, пропилбензол, метилэтилбензолы.

Во фракциях 200-350°С преобладают алкилбензолы, главным образом ди- и тризамещенные, молекулы которых содержат метальные группы и алкильную группу состава C 7 -Cg. Кроме гомологов бензола, в этих фракциях содержатся гомологи нафталина (моно-, би-, три- и тетрамети л нафталины). Найдены также гомологи дифенила. Нафталин встречается редко.

Во фракциях >350°С, кроме высших гомологов бензола и гомологов нафталина, содержатся диарилалканы - углеводороды, в молекулах которых

изолированные ароматические ядра связаны с углеводородным мостиком, например:

В высших фракциях содержатся в небольшом количестве также гомологи полициклических углеводородов с конденсированными кольцами, таких как:

Основная же часть этих углеводородов концентрируется в гудроне. Широко представлены в высших фракциях нефтей углеводороды смешанного строения, молекулы которых содержат наряду с ароматическими

В нефтях обнаружены многие ближайшие гомологи бензола с одним, двумя, тремя и четырьмя заместителями в ядре. Заместителем чаще всего является радикал метил, доказано наличие и таких углеводородов как изопропил бензол (кумол), пропилбензол, бутилбензолы, диэтилбензол и гомологи с различными заместителями в боковых цепях.

В средних фракциях нефти (200-350 о С) наряду с производными бензола присутствуют также нафталин и его ближайшие гомологи, т.е. бициклические конденсированные ароматические углеводороды.

В высших фракциях нефти обнаружены более сложные полициклические ароматические углеводороды с тремя, четырьмя и пятью конденсированными кольцами. Они являются гомологами нафталина, дифенила, аценафтена, антрацена, фенантрена, пирена, бензантрацена, хризена, фенантрена, перилена.

Присутствие ароматических углеводородов в бензинах весьма желательно, так как они обладают высокими октановыми числами. Наоборот, наличие их в значительных количествах в дизельных топливах (средние фракции нефти) ухудшает процесс сгорания топлива. Полициклические ароматические углеводороды с короткими боковыми цепями, попадающие при разгонке нефти в масляные фракции, должны быть удалены в процессе очистки, так как их присутствие вредно отражается на эксплуатационных качествах смазочных масел. Индивидуальные ароматические углеводороды: бензол, толуол, ксилолы, этилбензол, изопропилбензол и нафталин – ценное сырье для многих процессов нефтехимического и органического синтеза.

Углеводороды смешанного строения. Значительная часть углеводородов нефти имеет смешанное или гибридное строение. Это означает, что в молекулах таких углеводородов имеются разные структурные элементы: ароматические кольца, пяти- и шестичленные циклопарафиновые циклы и алифатические парафиновые цепи.

Масляные фракции почти целиком состоят из углеводородов смешанного строения. Их можно разделить на три типа: парафино-циклопарафиновые; парафино-ароматические; парафино-циклопарафино-ароматические.

Кислородные соединения . Основная часть кислорода, находящегося в нефти, входит в состав смолистых веществ, и только около 10% его приходится на долю кислых органических соединений - карбоновых кислот и фенолов. Нейтральных кислородных соединений в нефтях очень мало. В свою очередь, среди кислых соединений преобладают соединения, характеризующиеся наличием карбоксильной группы - нефтяные кислоты.

Среди них преобладают кислоты изостроения, включая и изопреноидные, и с четным числом углеродных атомов. Карбоновые кислоты - производные моноциклических нафтенов с общей формулой С п Н 2п-1 СООН или С п Н 2п - 2 О 2 получили название нафтеновых кислот.

Промышленное значение из всех кислородных соединений нефти имеют только нафтеновые кислоты и их соли-нафтенаты, обладающие хорошими моющими свойствами. Отходы щелочной очистки нефтяных дистиллятов –мылонафт используются при изготовлении моющих средств для текстильного производства.

Технические нефтяные кислоты (асидол), выделяемые из керосиновых и легких масляных дистиллятов, находят применение в качестве растворителей смол, каучука и анилиновых красителей, для пропитки шпал, для смачивания шерсти др. Натриевые и калиевые соли нафтеновых кислот служат в качестве деэмульгаторов для обезвоживания нефти.

Сернистые соединения. Сера является наиболее распространенным гетероэлементом в нефтях и нефтепродуктах. Содержание ее в нефтях колеблется от сотых долей до 5-6% масс. реже до 14% масс. Богаты серосодержащими соединениями нефти Урало-Поволжья и Сибири: количество серы в арланской нефти достигает до 3,0% масс., а в Усть-Балыкской до 1,8% масс. Из зарубежных наиболее высоким содержанием серы отличаются нефти: албанская (5-6% масс.), месторождения Эбано-Пануко (Мексика, 5,4% масс.), Роузл-Пойнт (США - до 14% масс.). В последнем случае практически все соединения нефти являются серосодержащими.

Распределение серы по фракциям зависит от природы нефти и типа сернистых соединений. Как правило, их содержание увеличивается от низко- к высококипящим и достигает максимума в остатке от вакуумной перегонки нефти-гудроне. В нефтях идентифицированы следующие типы серосодержащих соединений:

Элементарная сера и сероводород - не являются непосредственно сероорганическими соединениями, но появляются в результате деструкции последних;

Меркаптаны-тиолы, обладающие, как и сероводород, кислотными свойствами и наиболее сильной коррозионной активностью;

Алифатические сульфиды (тиоэфиры)- нейтральны при низких температурах, но термически мало устойчивы и разлагаются при нагревании свыше 130-160°С с образованием сероводорода и меркаптанов;

Моно- и полициклические сульфиды - термически наиболее устойчивые.

Сероводород обнаруживается в сырых нефтях не так часто и значительно в меньших количествах, чем в природных газах, газоконденсатах и нефтях

Меркаптаны (тиолы) имеют строения RSН, где R - углеводородный заместитель всех типов (алканов, цикланов, аренов, гибридных) разной молекулярной массы. Температура кипения индивидуальных алкилмеркаптанов С 1 -С 6 составляет при атмосферном давлении 6-140°С. Они обладают очень неприятным запахом. Это свойство их используется в практике газоснабжения городов и сел для предупреждения о неисправности газовой линии. В качестве одоранта бытовых газов используется этилмеркаптан.

По содержанию тиолов нефти подразделяют на меркаптановые и безмеркаптановые. В аномально высоких концентрациях меркаптаны содержатся в газоконденсатах и нефтях Прикаспийской низменности. Так, во фракции 40-200°С Оренбургского газоконденсата на долю меркаптанов приходится 1% из 1,24%масс. общей серы. Обнаружена следующая закономерность: меркаптановая сера в нефтях и газоконденсатах сосредоточена главным образом в головных фракциях.

Элементная сера, сероводород и меркаптаны как весьма агрессивные сернистые соединения являются наиболее нежелательной составной частью нефтей. Их необходимо полностью удалять в процессах очистки всех товарных нефтепродуктов.

Сульфиды (тиоэфиры) составляют основную часть сернистых соединений в топливных фракциях нефти (от 50 до 80%масс. от общей серы в этих фракциях). Нефтяные сульфиды подразделяют на 2 группы: диалкилсудьфиды (тиоалканы) и циклические диалкилсульфиды RSR" (где R и R" - алкильные заместители). Тиалканы содержатся преимущественно в парафинистых нефтях, а циклические - в нафтеновых и нафтено-ароматических. Тиоалканы С 2 -С 7 имеют низкие температуры кипения (37-150°С) и при перегонке нефти попадают в бензиновые фракции. С повышением температуры кипения нефтяных фракций количество тиоалканов уменьшается, и во фракциях выше 300°С они практически отсутствуют. В некоторых легких и средних фракциях нефтей в небольших количествах (менее 15% масс. от суммарной серы в этих фракциях) найдены дисульфиды RSSR" . При нагревании они образуют серу, сероводород и меркаптаны.

Моноциклические сульфиды представляют собой пяти- или шестичленные гетероциклы с атомом серы. Кроме того, в нефтях идентифицированы полициклические сульфиды и их разнообразные гомологи.

В средних фракциях многих нефтей преобладают тиоцикланы. Среди тиоцикланов, как правило, более распространены моноцикличеекие сульфиды. Полициклические сульфиды при разгонке нефтей преимущественно попадают в масляные фракции и сконцентрированы в нефтяных остатках.

Все серосодержащие соединения нефтей, кроме низкомолекулярных меркаптанов, при низких температурах химически нейтральны и близки по свойствам аренам. Промышленного применения они пока не нашли из-за низкой эффективности методов их выделения из нефтей. В ограниченных количествах выделяют из средних (керосиновых) фракций некоторых нефтей сульфиды для последующего окисления в сульфоны и сульфокислоты. Сернистые соединения нефтей в настоящее время не извлекают, а уничтожают гидрогенизационными процессами. Образующийся при этом сероводород перерабатывают в элементную серу или серную кислоту. В то же время в последние годы во многих странах мира разрабатываются и интенсивно вводятся многотоннажные промышленные процессы по синтезу сернистых соединений, аналогичных нефтяным, имеющих большую ценность. Среди них наибольшее промышленное значение имеют меркаптаны. Метилмеркаптан применяют в производстве метионина - одорант топливных газов.

Тиолы С 1 -С 4 - сырье для синтеза агрохимических веществ, применяются для активации (осернения) некоторых катализаторов в нефтепереработке. Тиолы от бутилмеркаптана до октадецилмеркаптана используют в производстве присадок к смазочным и трансформаторным маслам, к смазочно-охлаждающим эмульсиям, применяемым при холодной обработке металлов, в производстве детергентов, ингредиентов резиновых смесей. Тиолы С 8 -С 16 являются: регуляторами радикальных процессов полимеризации в производстве латексов, каучуков, пластмасс. В качестве регуляторов полимеризации наибольшее применение нашли третичный додецилмеркаптан и нормальный додецилмеркаптан. Меркаптаны применяют для синтеза флотореагентов, фотоматериалов, красителей специального назначения, косметики,в фармакологии, и многих других областях.

Сульфиды служат компонентами при синтезе красителей, продукты их окисления - сульфоксиды, сульфоны и сульфокислоты используют как эффективные экстрагенты редких металлов и флотореагенты полиметаллических руд, пластификаторы и биологически активные вещества. Перспективно применение сульфидов и их производных в качестве компонентов ракетных топлив, инсектицидов, фунгицидов, гербицидов, пластификаторов, комплексообразователей и т.д. За последние годы резко возрастает применение полифениленсульфидных полимеров. Они характеризуются хорошей термической стабильностью, способностью сохранять отличные механические характеристики при высоких температурах, высокой химической стойкостью и совместимостью с различными наполнителями. Твердые покрытия из полифенилсульфида легко наносятся на металл, обеспечивая надежную защиту его от коррозии, что уже подхвачено зарубежной нефтехимической промышленностью, где наблюдается полифенилсульфидный «бум». Важно еще подчеркнуть, что в этом полимере почти одна треть массы состоит из серы.

Тиофен и 2-метилтиофен являются эффективными выносителями соединений марганца из карбюраторных двигателей при использовании в качестве антидетонатора циклопентадиенилкарбонилмарганца. В настоящее время этот антидетонатор широко применяется в США, где около 40% неэтилированных бензинов содержат не свинцовые антидетонаторы.

Учитывая наличие значительных ресурсов серосодержащих соединений в нефтях, исключительно актуальной является проблема их извлечения и рационального применения в народном хозяйстве.

Азотистые соединения.. Органических азотистых соединений в нефтях в среднем не более 2-3% масс. и максимально (в высокосмолистых нефтях) до 10% масс. Большая часть азота концентрируется в тяжелых фракциях и в остаточных продуктах.

Смолисто-асфальтеновые вещества (САВ) концентрируются в тяжелых нефтяных остатках (ТНО) - мазутах, полугудронах, гудронах, битумах, крекинг-остатках и др. Суммарное содержание САВ в нефтях в зависимости от их типа и плотности колеблется от долей процентов до 45%масс. а в ТНО достигает до 70% масс. Наиболее богаты САВ молодые нефти нафтено-ароматического и ароматического типа.

САВ представляют собой сложную многокомпонентную исключительно полидисперсную по молекулярной массе смесь высокомолекулярных углеводородов и гетеросоединений, включающих, кроме углерода и водорода, серу, азот, кислород и металлы, такие как ванадий, никель, железо, молибден и т.д. Выделение индивидуальных САВ из нефтей и ТНО исключительно сложно. Молекулярная структура их до сих пор точно не установлена. Современный уровень знаний и возможности инструментальных физико-химических методов исследований позволяют лишь дать вероятностное представление о структурной организации, установить количество конденсированных нафтено-ароматических и других характеристик и построить среднестатистические модели гипотетических молекул смол и асфальтенов.

В практике исследования состава и строения нефтяных, угле- и коксохимических остатков широко используется сольвентный способ Ричардсона, основанный на различной растворимости групповых компонентов в органических растворителях (слабых, средних и сильных). По этому признаку различают следующие условные групповые компоненты:

Растворимые в низкомолекулярных (слабых) растворителях (изооктане, петролейном эфире) - масла и смолы.

Смолы извлекают из мальтенов адсорбционной хроматографией (на силикагеле или оксиде алюминия);

Нерастворимые в низкомолекулярных алканах С 5 -С 8 , но растворимые в толуоле, четыреххлористом углероде - асфальтены;

Нерастворимые в бензине, толуоле и четыреххлористом углероде, но растворимые в сероуглероде и хинолине - карбены;

Нерастворимые ни в каких растворителях – карбоиды.

В нефтях и нативных ТНО (т.е. не подвергнутых термодеструктивному воздействию) карбены и карбоиды отсутствуют. Под термином «масла» принято подразумевать высокомолекулярные углеводороды с молекулярной массой 300-500 смешанного (гибридного) строения. Методом хроматографического разделения из масляных фракций выделяют парафино-нафтеновые и ароматические углеводороды, в том числе легкие (моноциклические), средние (бициклические) и полициклические (три и более циклические). Наибольшее значение представляют смолы и асфальтены, которые часто называют коксообразующими компонентами и которые создают сложные технологические проблемы при переработке ТНО. Смолы - вязкие малоподвижные жидкости или аморфные твердые тела от темно-коричневого до темно-бурого цвета с плотностью около единицы или несколько больше. Они представляют собой плоско конденсированные системы, содержащие 5-6 колец ароматического, нафтенового и гетероциклического строения, соединенные посредством алифатических структур. Асфальтены - аморфные, но кристаллоподобной структуры твердые тела темно-бурого или черного цвета с плотностью несколько больше единицы. При нагревании не плавятся, а переходят в пластическое состояние при температуре около 300° С, а при более высокой температуре разлагаются с образованием газообразных и жидких веществ и твердого остатка - кокса. Они в отличие от смол образуют пространственные конденсированные кристаллоподобные структуры. Наиболее существенные отличия смол и асфальтенов проявляются по таким основным показателям, как растворимость в низкомолекулярных алканах, отношение С:Н, молекулярная масса.

Смолы образуют истинные растворы в маслах и топливных дистиллятах, а асфальтены в ТНО находятся в коллоидном состоянии. Растворителем для асфальтенов в нефтях являются ароматические углеводороды и смолы. Благодаря межмолекулярным взаимодействиям асфальтены могут образовывать ассоциаты - надмолекулярные структуры. На степень их ассоциации сильно влияет среда. Так, при низких концентрациях в бензоле и нафталине (менее 2 и 16% масс. соответственно) асфальтены находятся в молекулярном состоянии. При более высоких значениях концентраций в растворе формируются ассоциаты, состоящие из большого числа молекул. Именно способностью к ассоциатообразованию обусловливается разнобой на 1-2 порядка в результатах определения молекулярной массы асфальтенов в зависимости от метода ее определения.

Строение и свойства асфальтенов существенно зависят от происхождения ТНО. Так, асфальтены из остатков деструктивного происхождения характеризуются по сравнению с нативными «рыхлыми» асфальтенами меньшей молекулярной массой, преимущественной конденсированностью в плоскости, меньшим количеством и длиной алифатических структур и в связи с этим большей компактностью (и обладают меньшей вязкостью).

Соотношение смол к асфальтенам в нефтях и ТНО колеблется в широких пределах - (7-9):1 в остатках прямой перегонки, до (1-7):1 - в окисленных остатках (битумах).

В ТНО термодеструктивных процессов появляются карбены и карбоиды.

Карбены - линейные полимеры асфальтеновых молекул с молекулярной массой (100-185) тыс., растворимые лишь в сероуглероде и хинолине.

Карбоиды являются сшитым трехмерным полимером (кристаллитом), вследствие чего они не растворимы ни в одном из известных органических растворителей.

Все САВ отрицательно влияют на качество смазочных масел (ухудшают цвет, увеличивают нагарообразование, понижают смазывающую способность и т.д.) и подлежат удалению. В составе нефтяных битумов они обладают рядом ценных технических свойств и придают им качества, позволяющие широко использовать их. Главные направления использования: дорожные покрытия, гидроизоляционные материалы, в строительстве, производство кровельных изделий, битумно-асфальтеновых лаков, пластиков, пеков, коксов, связующих для брикетирования углей, порошковых ионитов и др.

В основу классификации нейтральных смолистых веществ положено их отношение к различным растворителям. По этому признаку принято различать следующие группы:

Нейтральные смолы, растворимые в легком бензине (петролейном эфире), пентане, гексане;

Асфальтены, нерастворимые в петролейном эфире, но растворимые в горячем бензоле;

Карбены, частично растворимые только в пиридине и сероуглероде;

Карбоиды - вещества, практически ни в чем нерастворимые.

Смолы обладают сильной красящей способностью. Темная окраска дистиллятов, как и сырой нефти, обусловлена в основном присутствием в них нейтральных смол. Характерная особенность нейтральных смол - их способность уплотняться в асфальтены под воздействием таких факторов, как нагревание, обработка адсорбентами или серной кислотой. Особенно легко этот процесс протекает при нагревании и одновременном продувании воздуха.

Асфальтены - это наиболее высокомолекулярные гетероорганические соединения нефти. По внешнему виду асфадьтены - порошкообразные вещества бурого или черного цвета. Относительная плотность их выше единицы, молекулярная масса около 2000. По элементному составу асфальтены отличаются от нейтральных смол меньшим содержанием водорода и большим – углерода и гетероатомов.

Все САВ отрицательно влияют на качество смазочных масел и подлежат удалению. В составе нефтяных битумов они обладают рядом ценных технических свойств. Главные направления их использования: дорожные покрытия, гидроизоляционные материалы, производство кровельных изделий, коксов.

Нейтральные смолы и асфальтены представляют собой сложные смеси высокомолекулярных гетероатомных соединений. Они различаются между собой по молекулярной массе, элементному составу и степени ненасыщенности. В общей формуле (без гетероатомов) С n Н 2 n - x значение x в нейтральных смолах колеблется в пределах 10-34, а для асфальтенов может достигать 100-120.

ВЫВОД: При рассмотрении группового химического со­става нефти можно грубо разделить нефть на две части соедине­ний: выкипающие приблизительно до 360° С, состоящие в основном из углеводородов и лишь в незначительной части из гетероатомных соединений (кислородные - фенолы, нафтеновые кислоты; серни­стые - меркаптаны, сульфиды, дисульфиды, тиофены; азотистые - пиридиновые основания и имины), и кипящие выше 360° С, состоящие в основном из гетероатомных соединений, содержащих в составе мо­лекул О, S и N, и в меньшей мере из углеводородов (парафины, гиб­ридные углеводороды).

Вопросы для самопроверки

    Каков состав парафиновых углеводородов нефти?

    Какими структурами представлены в нефти моноциклические нафтены?

3. Почему нафтены являются желательными компонентами моторных топлив и смазочных масел?

4. Какие арены обнаружены в нефтях?

5. Какие фракции нефти почти целиком состоят из углеводородов смешанного строения?

    Какими классами соединений представлены в нефти кислородсодержащие соединения?

    Как распределяется сера по фракциям нефти?

    Что представляют собой азотистые соединения нефти?

    Что представляют собой смолы?

10. Главные направления использования смолисто-асфальтеновых веществ.

11. Что представляют собой асфальтены по углеводородному составу?

Понравилась статья? Поделиться с друзьями: