Освобождение от иррациональности в знаменателе дроби онлайн. Освобождение от иррациональности в знаменателе

При изучении преобразований иррационального выражения очень важным является вопрос о том, как освободиться от иррациональности в знаменателе дроби. Целью этой статьи является объяснение этого действия на конкретных примерах задач. В первом пункте мы рассмотрим основные правила данного преобразования, а во втором – характерные примеры с подробными пояснениями.

Yandex.RTB R-A-339285-1

Понятие освобождения от иррациональности в знаменателе

Начнем с пояснения, в чем вообще заключается смысл такого преобразования. Для этого вспомним следующие положения.

Об иррациональности в знаменателе дроби можно говорить в том случае, если там присутствует радикал, он же знак корня. Числа, которые записаны при помощи такого знака, часто относятся к числу иррациональных. Примерами могут быть 1 2 , - 2 x + 3 , x + y x - 2 · x · y + 1 , 11 7 - 5 . К дробям с иррациональными знаменателями также относятся те, что имеют там знаки корней различной степени (квадратный, кубический и т.д.), например, 3 4 3 , 1 x + x · y 4 + y . Избавляться от иррациональности следует для упрощения выражения и облегчения дальнейших вычислений. Сформулируем основное определение:

Определение 1

Освободиться от иррациональности в знаменателе дроби – значит преобразовать ее, заменив на тождественно равную дробь, в знаменателе которой не содержится корней и степеней.

Такое действие может называться освобождением или избавлением от иррациональности, смысл при этом остается тем же. Так, переход от 1 2 к 2 2 , т.е. к дроби с равным значением без знака корня в знаменателе и будет нужным нам действием. Приведем еще один пример: у нас есть дробь x x - y . Проведем необходимые преобразования и получим тождественно равную ей дробь x · x + y x - y , освободившись от иррациональности в знаменателе.

После формулировки определения мы можем переходить непосредственно к изучению последовательности действий, которые нужно выполнить для такого преобразования.

Основные действия для избавления от иррациональности в знаменателе дроби

Для освобождения от корней нужно провести два последовательных преобразования дроби: умножить обе части дроби на число, отличное от нуля, а затем преобразовать выражение, получившееся в знаменателе. Рассмотрим основные случаи.

В наиболее простом случае можно обойтись преобразованием знаменателя. Например, мы можем взять дробь со знаменателем, равным корню из 9 . Вычислив 9 , мы запишем в знаменателе 3 и избавимся таким образом от иррациональности.

Однако гораздо чаще приходится предварительно умножать числитель и знаменатель на такое число, которое потом позволит привести знаменатель к нужному виду (без корней). Так, если мы выполним умножение 1 x + 1 на x + 1 , мы получим дробь x + 1 x + 1 · x + 1 и сможем заменить выражение в ее знаменателе на x + 1 . Так мы преобразовали 1 x + 1 в x + 1 x + 1 , избавившись от иррациональности.

Иногда преобразования, которые нужно выполнить, бывают довольно специфическими. Разберем несколько наглядных примеров.

Как преобразовать выражение в знаменателе дроби

Как мы уже говорили, проще всего выполнить преобразование знаменателя.

Пример 1

Условие: освободите дробь 1 2 · 18 + 50 от иррациональности в знаменателе.

Решение

Для начала раскроем скобки и получим выражение 1 2 · 18 + 2 · 50 . Используя основные свойства корней, перейдем к выражению 1 2 · 18 + 2 · 50 . Вычисляем значения обоих выражений под корнями и получаем 1 36 + 100 . Здесь уже можно извлечь корни. В итоге у нас получилась дробь 1 6 + 10 , равная 1 16 . На этом преобразования можно закончить.

Запишем ход всего решения без комментариев:

1 2 · 18 + 50 = 1 2 · 18 + 2 · 50 = = 1 2 · 18 + 2 · 50 = 1 36 + 100 = 1 6 + 10 = 1 16

Ответ: 1 2 · 18 + 50 = 1 16 .

Пример 2

Условие: дана дробь 7 - x (x + 1) 2 . Избавьтесь от иррациональности в знаменателе.

Решение

Ранее в статье, посвященной преобразованиям иррациональных выражений с применением свойств корней, мы упоминали, что при любом A и четных n мы можем заменить выражение A n n на | A | на всей области допустимых значений переменных. Следовательно, в нашем случае мы можем записать так: 7 - x x + 1 2 = 7 - x x + 1 . Таким способом мы освободились от иррациональности в знаменателе.

Ответ: 7 - x x + 1 2 = 7 - x x + 1 .

Избавление от иррациональности методом умножения на корень

Если в знаменателе дроби находится выражение вида A и само выражение A не имеет знаков корней, то мы можем освободиться от иррациональности, просто умножив обе части исходной дроби на A . Возможность этого действия определяется тем, что A на области допустимых значений не будет обращаться в 0 . После умножения в знаменателе окажется выражение вида A · A , которое легко избавить от корней: A · A = A 2 = A . Посмотрим, как правильно применять этот метод на практике.

Пример 3

Условие: даны дроби x 3 и - 1 x 2 + y - 4 . Избавьтесь от иррациональности в их знаменателях.

Решение

Выполним умножение первой дроби на корень второй степени из 3 . Получим следующее:

x 3 = x · 3 3 · 3 = x · 3 3 2 = x · 3 3

Во втором случае нам надо выполнить умножение на x 2 + y - 4 и преобразовать получившееся выражение в знаменателе:

1 x 2 + y - 4 = - 1 · x 2 + y - 4 x 2 + y - 4 · x 2 + y - 4 = = - x 2 + y - 4 x 2 + y - 4 2 = - x 2 + y - 4 x 2 + y - 4

Ответ: x 3 = x · 3 3 и - 1 x 2 + y - 4 = - x 2 + y - 4 x 2 + y - 4 .

Если же в знаменателе исходной дроби имеются выражения вида A n m или A m n (при условии натуральных m и n), нам нужно выбрать такой множитель, чтобы получившееся выражение можно было преобразовать в A n n · k или A n · k n (при натуральном k). После этого избавиться от иррациональности будет несложно. Разберем такой пример.

Пример 4

Условие: даны дроби 7 6 3 5 и x x 2 + 1 4 15 . Избавьтесь от иррациональности в знаменателях.

Решение

Нам нужно взять натуральное число, которое можно разделить на пять, при этом оно должно быть больше трех. Чтобы показатель 6 стал равен 5 , нам надо выполнить умножение на 6 2 5 . Следовательно, обе части исходной дроби нам придется умножить на 6 2 5:

7 6 3 5 = 7 · 6 2 5 6 3 5 · 6 2 5 = 7 · 6 2 5 6 3 5 · 6 2 = 7 · 6 2 5 6 5 5 = = 7 · 6 2 5 6 = 7 · 36 5 6

Во втором случае нам потребуется число, большее 15 , которое можно разделить на 4 без остатка. Берем 16 . Чтобы получить такой показатель степени в знаменателе, нам надо взять в качестве множителя x 2 + 1 4 . Уточним, что значение этого выражения не будет 0 ни в каком случае. Вычисляем:

x x 2 + 1 4 15 = x · x 2 + 1 4 x 2 + 1 4 15 · x 2 + 1 4 = = x · x 2 + 1 4 x 2 + 1 4 16 = x · x 2 + 1 4 x 2 + 1 4 4 4 = x · x 2 + 1 4 x 2 + 1 4

Ответ : 7 6 3 5 = 7 · 36 5 6 и x x 2 + 1 4 15 = x · x 2 + 1 4 x 2 + 1 4 .

Избавление от иррациональности методом умножения на сопряженное выражение

Следующий метод подойдет для тех случаев, когда в знаменателе исходной дроби стоят выражения a + b , a - b , a + b , a - b , a + b , a - b . В таких случаях нам надо взять в качестве множителя сопряженное выражение. Поясним смысл этого понятия.

Для первого выражения a + b сопряженным будет a - b , для второго a - b – a + b . Для a + b – a - b , для a - b – a + b , для a + b – a - b , а для a - b – a + b . Иначе говоря, сопряженное выражение – это такое выражение, в котором перед вторым слагаемым стоит противоположный знак.

Давайте рассмотрим, в чем именно заключается данный метод. Допустим, у нас есть произведение вида a - b · a + b . Оно может быть заменено разностью квадратов a - b · a + b = a 2 - b 2 , после чего мы переходим к выражению a − b , лишенному радикалов. Таким образом, мы освободились от иррациональности в знаменателе дроби с помощью умножения на сопряженное выражение. Возьмем пару наглядных примеров.

Пример 5

Условие: избавьтесь от иррациональности в выражениях 3 7 - 3 и x - 5 - 2 .

Решение

В первом случае берем сопряженное выражение, равное 7 + 3 . Теперь производим умножение обеих частей исходной дроби на него:

3 7 - 3 = 3 · 7 + 3 7 - 3 · 7 + 3 = 3 · 7 + 3 7 2 - 3 2 = = 3 · 7 + 3 7 - 9 = 3 · 7 + 3 - 2 = - 3 · 7 + 3 2

Во втором случае нам понадобится выражение - 5 + 2 , которое является сопряженным выражению - 5 - 2 . Умножим на него числитель и знаменатель и получим:

x - 5 - 2 = x · - 5 + 2 - 5 - 2 · - 5 + 2 = = x · - 5 + 2 - 5 2 - 2 2 = x · - 5 + 2 5 - 2 = x · 2 - 5 3

Возможно также перед умножением выполнить преобразование: если мы вынесем из знаменателя сначала минус, считать будет удобнее:

x - 5 - 2 = - x 5 + 2 = - x · 5 - 2 5 + 2 · 5 - 2 = = - x · 5 - 2 5 2 - 2 2 = - x · 5 - 2 5 - 2 = - x · 5 - 2 3 = = x · 2 - 5 3

Ответ: 3 7 - 3 = - 3 · 7 + 3 2 и x - 5 - 2 = x · 2 - 5 3 .

Важно обратить внимание на то, чтобы выражение, полученное в итоге умножения, не обращалось в 0 ни при каких переменных из области допустимых значений для данного выражения.

Пример 6

Условие: дана дробь x x + 4 . Преобразуйте ее так, чтобы в знаменателе не было иррациональных выражений.

Решение

Начнем с нахождения области допустимых значений переменной x . Она определена условиями x ≥ 0 и x + 4 ≠ 0 . Из них можно сделать вывод, что нужная область представляет собой множество x ≥ 0 .

Сопряженное знаменателю выражение представляет собой x - 4 . Когда мы можем выполнить умножение на него? Только в том случае, если x - 4 ≠ 0 . На области допустимых значений это будет равносильно условию x≠16. В итоге мы получим следующее:

x x + 4 = x · x - 4 x + 4 · x - 4 = = x · x - 4 x 2 - 4 2 = x · x - 4 x - 16

Если x будет равен 16 , то мы получим:

x x + 4 = 16 16 + 4 = 16 4 + 4 = 2

Следовательно, x x + 4 = x · x - 4 x - 16 при всех значениях x , принадлежащих области допустимых значений, за исключением 16 . При x = 16 получим x x + 4 = 2 .

Ответ: x x + 4 = x · x - 4 x - 16 , x ∈ [ 0 , 16) ∪ (16 , + ∞) 2 , x = 16 .

Преобразование дробей с иррациональностью в знаменателе с использованием формул суммы и разности кубов

В предыдущем пункте мы выполняли умножение на сопряженные выражения с тем, чтобы потом использовать формулу разности квадратов. Иногда для избавления от иррациональности в знаменателе полезно воспользоваться и другими формулами сокращенного умножения, например, разностью кубов a 3 − b 3 = (a − b) · (a 2 + a · b + b 2) . Этой формулой удобно пользоваться, если в знаменателе исходной дроби стоят выражения с корнями третьей степени вида A 3 - B 3 , A 3 2 + A 3 · B 3 + B 3 2 . и т.д. Чтобы применить ее, нам нужно умножить знаменатель дроби на неполный квадрат суммы A 3 2 + A 3 · B 3 + B 3 2 или разность A 3 - B 3 . Точно также можно применить и формулу суммы a 3 + b 3 = (а) · (a 2 − a · b + b 2) .

Пример 7

Условие: преобразуйте дроби 1 7 3 - 2 3 и 3 4 - 2 · x 3 + x 2 3 так, чтобы избавиться от иррациональности в знаменателе.

Решение

Для первой дроби нам нужно воспользоваться методом умножения обеих частей на неполный квадрат суммы 7 3 и 2 3 , поскольку потом мы сможем выполнить преобразование с помощью формулы разности кубов:

1 7 3 - 2 3 = 1 · 7 3 2 + 7 3 · 2 3 + 2 3 2 7 3 - 2 3 · 7 3 2 + 7 3 · 2 3 + 2 3 2 = = 7 3 2 + 7 3 · 2 3 + 2 3 2 7 3 3 - 2 3 3 = 7 2 3 + 7 · 2 3 + 2 2 3 7 - 2 = = 49 3 + 14 3 + 4 3 5

Во второй дроби представим знаменатель как 2 2 - 2 · x 3 + x 3 2 . В этом выражении виден неполный квадрат разности 2 и x 3 , значит, мы можем умножить обе части дроби на сумму 2 + x 3 и воспользоваться формулой суммы кубов. Для этого должно быть соблюдено условие 2 + x 3 ≠ 0 , равносильное x 3 ≠ - 2 и x ≠ − 8:

3 4 - 2 · x 3 + x 2 3 = 3 2 2 - 2 · x 3 + x 3 2 = = 3 · 2 + x 3 2 2 - 2 · x 3 + x 3 2 · 2 + x 3 = 6 + 3 · x 3 2 3 + x 3 3 = = 6 + 3 · x 3 8 + x

Подставим в дробь - 8 и найдем значение:

3 4 - 2 · 8 3 + 8 2 3 = 3 4 - 2 · 2 + 4 = 3 4

Подведем итоги. При всех x , входящих в область значений исходной дроби (множество R), за исключением - 8 , мы получим 3 4 - 2 · x 3 + x 2 3 = 6 + 3 · x 3 8 + x . Если x = 8 , то 3 4 - 2 · x 3 + x 2 3 = 3 4 .

Ответ: 3 4 - 2 · x 3 + x 2 3 = 6 + 3 · x 3 8 + x , x ≠ 8 3 4 , x = - 8 .

Последовательное применение различных способов преобразования

Часто на практике встречаются более сложные примеры, когда мы не можем освободиться от иррациональности в знаменателе с помощью всего одного метода. Для них нужно последовательно выполнять несколько преобразований или подбирать нестандартные решения. Возьмем одну такую задачу.

Пример N

Условие: преобразуйте 5 7 4 - 2 4 , чтобы избавиться от знаков корней в знаменателе.

Решение

Выполним умножение обеих частей исходной дроби на сопряженное выражение 7 4 + 2 4 с ненулевым значением. Получим следующее:

5 7 4 - 2 4 = 5 · 7 4 + 2 4 7 4 - 2 4 · 7 4 + 2 4 = = 5 · 7 4 + 2 4 7 4 2 - 2 4 2 = 5 · 7 4 + 2 4 7 - 2

А теперь применим тот же способ еще раз:

5 · 7 4 + 2 4 7 - 2 = 5 · 7 4 + 2 4 · 7 + 2 7 - 2 · 7 + 2 = = 5 · 7 4 + 2 4 · 7 + 2 7 2 - 2 2 = 5 · 7 4 + 7 4 · 7 + 2 7 - 2 = = 5 · 7 4 + 2 4 · 7 + 2 5 = 7 4 + 2 4 · 7 + 2

Ответ: 5 7 4 - 2 4 = 7 4 + 2 4 · 7 + 2 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Урок №1 Тема урока: «Освобождение от иррациональности в знаменателе дроби»

Цели:

Образовательная:

Развивающая:

Воспитательная: воспитание последовательности в своих действиях.

Тип урока: изучение нового

Стандарт урока:

    уметь находить способ избавления от иррациональности

    понимать смысл «сопряженное выражение»

    уметь избавляться от иррациональности в знаменателе.

Оборудование: карточки к самостоятельной работе.

Ход урока

Немного юмора:

Извлекать корни умеешь? – спрашивает учитель

Да, конечно. Нужно потянуть за стебель растения посильнее, и корень его извлечётся из почвы.

Нет, я имел в виду другой корень, например, из девяти.

Это будет «девя», так как «ть»-суффикс.

Я имею в виду корень квадратный.

Квадратных корней не бывает. Они бывают мочковатые и стержневые.

Арифметический квадратный корень из девяти.

Так бы и сказали! Квадратный корень из девяти =3!

А вы корни извлекать умеете?

2. «Повторение – мать учения».

(8 мин)

2.Проверка дом/з № 168 1)4; 2)10; 3)4;4) 8

3.Разминка. Выполни действия (Слайд 1). Проверка по кругу против часовой стрелки.

1. Подбери неизвестный множитель (Слайд2)

Деление на группы: по выбранным фигурам.

Проверяют в парах сменного состава.

Работают индивидуально и проверяют, оценивая в баллах.

(Приложение 1)

3. «Книга – книгой, а мозгами двигай» (5 мин)

(Слайд 3) Два друга решали уравнение
и получили разные ответы. Один из них подобрал х = , сделал проверку. Второй находил неизвестный множитель делением произведения на
и получил х = . Кто из них прав? Может ли линейное уравнение иметь два корня? Самым удобным для вычислений является выражение, не содержащее иррациональности в знаменателе.

Тема урока (Слайд 4): Освобождение от иррациональности в знаменателе дроби

Цели (Слайд 5): ознакомиться со способами избавления от иррациональности в знаменатели дроби. Развитие умения освобождать знаменатель от иррациональности;

Решают и проверяют в парах сменного состава.

Обсуждают ситуацию и приходят к выводу.

Записывают тему

Формулируют цели : ознакомиться со способами избавления от иррациональности в знаменатели дроби.

развитие умения определять способ освобождения от иррациональности;

4. Работа над новым материалом.

(10 мин)

Как избавиться от иррациональности в знаменателе? Хотите узнать?

    Работа в группах над новым материалом

    Выступление групп

    Закрепление (Слайд 6)

Работают с опорным конспектом. (Приложение 2)

Решают примеры.

(Приложение 3)

Обмениваются информацией.

5. Зарядка (3 мин)

Делают зарядку

6. Самостоятельная работа

(10 мин)

По разноуровневым карточкам

1-в:

2-в:

3-в:

Выполняют индивидуально, проверяют меняясь тетрадями с другой группой.

Баллы заносят в оценочную карту группы.

(Приложение 1)

7.Творческое задание

(2 мин)

Мартышка – апельсинов продавщица,(Слайд 7)

Приехав как – то раз к себе на дачу,

Нашла там с радикалами задачу.

Разбрасывать их стала все подряд.

Мы просим вас, девчонки и мальчишки,

Решить задачу на хвосте мартышки.

Как вы думаете мы закончили изучать эту тему? Продолжим на следующем уроке.

Рассуждают о том, что это им предстоит узнать на следующем уроке.

8. Задание на дом: (2 мин)

П.19(Слайд 7)

1 уровень: №170 (1-6)

2 уровень: №170 (1-6 и 9,12)

Творческое задание: Мартышкина задача.

Записывают

9.Итог урока. Рефлексия

(3 мин)

Две звезды и пожелание на стикерах прикрепляются на выбранный смайлик (Слайд 7)

Баллы переводят в оценку и сдают учителю оценочную карту группы.


ПРИЛОЖЕНИЕ 1

Оценочная карта группы.

0-8 баллов

Подбери множитель

0-8 баллов

Работа в группе над новым материалом

0-5 баллов

Сам. работа

0-5 баллов

Активность на уроке

0-5 баллов

ПРИЛОЖЕНИЕ 2

Опорный конспект

Если знаменатель алгебраической дроби содержит знак квадратного корня, то говорят, что в знаменателе содержится иррациональность. Преобразование выражения к такому виду, чтобы в знаменателе дроби не оказалось знаков квадратных корней, называют освобождением от иррациональности в знаменателе

Решение уравнений с дробями рассмотрим на примерах. Примеры простые и показательные. С их помощью вы наиболее понятным образом сможете усвоить, .
Например, требуется решить простое уравнение x/b + c = d.

Уравнения такого типа называется линейным, т.к. в знаменателе находятся только числа.

Решение выполняется путем умножения обоих частей уравнения на b, тогда уравнение принимает вид x = b*(d – c), т.е. знаменатель дроби в левой части сокращается.

Например, как решить дробное уравнение:
x/5+4=9
Умножаем обе части на 5. Получаем:
х+20=45
x=45-20=25

Другой пример, когда неизвестное находится в знаменателе:

Уравнения такого типа называются дробно-рациональными или просто дробными.

Решать дробное уравнение бы будем путем избавления от дробей, после чего это уравнение, чаще всего, превращается в линейное или квадратное, которое решается обычным способом. Следует только учесть следующие моменты:

  • значение переменной, обращающее в 0 знаменатель, корнем быть не может;
  • нельзя делить или умножать уравнение на выражение =0.

Здесь вступает в силу такое понятие, как область допустимых значений (ОДЗ) – это такие значения корней уравнения, при которых уравнение имеет смысл.

Таким образом решая уравнение, необходимо найти корни, после чего проверить их на соответствие ОДЗ. Те корни, которые не соответствуют нашей ОДЗ, из ответа исключаются.

Например, требуется решить дробное уравнение:

Исходя из вышеуказанного правила х не может быть = 0, т.е. ОДЗ в данном случае: х – любое значение, отличное от нуля.

Избавляемся от знаменателя путем умножения всех членов уравнения на х

И решаем обычное уравнение

5x – 2х = 1
3x = 1
х = 1/3

Ответ: х = 1/3

Решим уравнение посложнее:

Здесь также присутствует ОДЗ: х -2.

Решая это уравнение, мы не станем переносить все в одну сторону и приводить дроби к общему знаменателю. Мы сразу умножим обе части уравнения на выражение, которое сократит сразу все знаменатели.

Для сокращения знаменателей требуется левую часть умножить на х+2, а правую - на 2. Значит, обе части уравнения надо умножать на 2(х+2):

Это самое обычное умножение дробей, которое мы уже рассмотрели выше

Запишем это же уравнение, но несколько по-другому

Левая часть сокращается на (х+2), а правая на 2. После сокращения получаем обычное линейное уравнение:

х = 4 – 2 = 2, что соответствует нашей ОДЗ

Ответ: х = 2.

Решение уравнений с дробями не так сложно, как может показаться. В этой статье мы на примерах это показали. Если у вас возникли какие то трудности с тем, как решать уравнения с дробями , то отписывайтесь в комментариях.

По вашим просьбам!

5. Решите неравенство:

6 . Упростите выражение:

17. f(x)=6x 2 +8x+5, F(-1)=3. Найдите F(-2).

Найдем С, зная, что F(-1) = 3.

3 = 2 ∙ (-1) 3 + 4 ∙ (-1) 2 + 5 ∙ (-1) + C;

3 = -2 + 4 – 5 + C;

Таким образом первообразная F(x) = 2x 3 + 4x 2 + 5x + 6. Найдем F(-2).

F(-2) = 2∙(-2) 3 +4∙(-2) 2 +5∙(-2)+6 = -16+16-10+6=-4.

20. Избавьтесь от иррациональности в знаменателе

Решение основано на основном свойстве дроби, позволяющим умножать числитель и знаменатель дроби на одно и то же, не равное нулю число. Чтобы избавиться от знаков радикала в знаменателе дроби, обычно используют ФСУ (формулы сокращенного умножения). Ведь если разность двух радикалов умножить на их сумму, то получится разность квадратов корней, т.е. получится выражение без знаков радикалов.

21. Упростить выражение:

Решим этот пример двумя способами. 1) Представим подкоренное выражение второго множителя в виде квадрата суммы двух выражений, т.е. в виде(a + b) 2 . Это позволит нам извлечь арифметический квадратный корень.

2) Возведем первый множитель в квадрат и внесем его под знак арифметического квадратного корня второго множителя.

Решайте удобным для себя способом!

22. Найдите (х 1 ∙у 1 +х 2 ∙у 2), где (х n ; y n) – решения системы уравнений:

Так как арифметический квадратный корень можно извлечь только из неотрицательного числа, то допустимыми значениями переменной у служат все числа, удовлетворяющие неравенству y≥0 . Так как произведение в первом уравнении системы равно отрицательному числу, то должно выполняться условие: x<0 . Выразим х из первого уравнения и подставим его значение во второе уравнение. Решим получившееся уравнение относительно у , а затем найдем значения х , соответствующие полученным ранее значениям у .

23. Решить неравенство: 7sin 2 x+cos 2 x>5sinx.

Так как по основному тригонометрическому тождеству: sin 2 x+cos 2 x=1, то представив данное неравенство в виде 6sin 2 x+ sin 2 x +cos 2 x>5sinx и применив основное тригонометрическое тождество, получаем: 6sin 2 x+ 1>5sinx. Решаем неравенство:

6sin 2 x-5sinx+1 >0. Сделаем замену: sinx=y и получим квадратичное неравенство:

6y 2 -5y+1>0. Решим это неравенство методом интервалов, разложив левую часть на множители. Для этого найдем корни полного квадратного уравнения:

6y 2 -5y+1=0. Дискриминант D=b 2 -4ac=5 2 -4∙6∙1=25-24=1. Тогда получаем у 1 и у 2:

24. В основании прямой призмы лежит правильный треугольник, площадь которого равна Вычислите площадь боковой поверхности призмы, если ее объем равен 300 см 3 .

Пусть нам дана правильная треугольная призма АВСА 1 В 1 С 1 , в основании которой лежит правильный Δ АВС, его площадь нам известна. Применив формулу площади равностороннего треугольника, мы найдем сторону нашего треугольника АВС. Так как объем прямой призмы, вычисляется по формуле V=S осн. ∙ H, и нам также известен, то можно найти Н — высоту призмы. Боковое ребро призмы будет равно высоте призмы: AA 1 =H. Зная сторону основания и длину бокового ребра призмы можно найти площадь ее боковой поверхности по формуле: S бок. =P осн. ∙ H.

25. На школьной викторине было предложено 20 вопросов. За каждый правильный ответ участнику начисляли 12 очков, а за каждый неправильный списывали 10 очков. Сколько правильных ответов дал один из участников, если он отвечал на все вопросы и набрал 86 очков?

Пусть участник дал х правильных ответов. Тогда неправильных у него (20-х) ответов. Зная, что за каждый правильный ответ ему начисляли 12 очков, а за каждый неправильный списывали 10 очков и при этом он набрал 86 очков, составим уравнение:

12х-10·(20-х)=86;

12х-200+10х=86;

22х=286 ⇒ х=286:22 ⇒ х=13. Участник дал 13 правильных ответов.

Я желаю вам дать 25 правильных ответов на тест по математике на ЕНТ!

24. В правильной четырехугольной пирамиде высота равна 3, боковое ребро 6. Найти радиус шара, описанного около пирамиды.

Пусть шар с центром в точке О 1 и радиусом МО 1 описан около правильной пирамиды MABCD с высотой МО=3 и боковым ребром МА=6. Требуется найти радиус шара МО 1 . Рассмотрим ΔМАМ 1 , в котором сторона ММ 1 — диаметр шара. Тогда ∠МАМ 1 =90°. Найдем гипотенузу ММ 1 , если известны катет МА и проекция этого катета МО на гипотенузу. Помните? Высота, проведенная из вершины прямого угла к гипотенузе есть средняя пропорциональная величина между проекциями катетов на гипотенузу, а каждый катет есть средняя пропорциональная величина между всей гипотенузой и проекцией этого катета на гипотенузу. Нам в этой задаче пригодится только подчеркнутая часть правила.

Записываем равенство: МА 2 =МО∙ММ 1 . Подставляем свои данные: 6 2 =3∙ ММ 1 . Отсюда ММ 1 =36:3=12. Мы нашли диаметр шара, следовательно, радиус МО 1 =6.

25. Петя старше Коли, который старше Миши, Маша старше Коли, а Даша младше Пети, но старше Маши. Кто третий по возрасту?

Будем считать: старше — это больше. Петя старше Коли, который старше Миши запишем так: Петя>Коля>Миша. Даша младше Пети, но старше Маши запишем так: Маша<Даша<Петя, что будет равнозначно записи: Петя>Даша>Маша. Так как Маша старше Коли, то получаем: Петя>Даша>Маша>Коля. И окончательно: Петя>Даша>Маша>Коля>Миша. Таким образом, третий по возрасту — Маша.

Желаю успешной подготовки к ЕНТ!

В данной теме мы рассмотрим все три перечисленные выше группы пределов с иррациональностями. Начнём с пределов, содержащих неопределенность вида $\frac{0}{0}$.

Раскрытие неопределенности $\frac{0}{0}$.

Схема решения стандартных примеров такого типа обычно состоит из двух шагов:

  • Избавляемся от иррациональности, вызвавшей неопределенность, домножая на так называемое "сопряжённое" выражение;
  • При необходимости раскладываем выражение в числителе или знаменателе (или и там и там) на множители;
  • Сокращаем множители, приводящие к неопределённости, и вычисляем искомое значение предела.

Термин "сопряжённое выражение", использованный выше, будет детально пояснён в примерах. Пока что останавливаться на нём подробно нет резона. Вообще, можно пойти иным путём, без использования сопряжённого выражения. Иногда от иррациональности может избавить удачно подобранная замена. Такие примеры редки в стандартных контрольных работах, поэтому на использование замены рассмотрим лишь один пример №6 (см. вторую часть данной темы).

Нам понадобится несколько формул, которые я запишу ниже:

\begin{equation} a^2-b^2=(a-b)\cdot(a+b) \end{equation} \begin{equation} a^3-b^3=(a-b)\cdot(a^2+ab+b^2) \end{equation} \begin{equation} a^3+b^3=(a+b)\cdot(a^2-ab+b^2) \end{equation} \begin{equation} a^4-b^4=(a-b)\cdot(a^3+a^2 b+ab^2+b^3)\end{equation}

Кроме того, предполагаем, что читатель знает формулы для решения квадратных уравнений. Если $x_1$ и $x_2$ - корни квадратного трёхчлена $ax^2+bx+c$, то разложить его на множители можно по следующей формуле:

\begin{equation} ax^2+bx+c=a\cdot(x-x_1)\cdot(x-x_2) \end{equation}

Формул (1)-(5) вполне хватит для решения стандартных задач, к которым мы сейчас и перейдём.

Пример №1

Найти $\lim_{x\to 3}\frac{\sqrt{7-x}-2}{x-3}$.

Так как $\lim_{x\to 3}(\sqrt{7-x}-2)=\sqrt{7-3}-2=\sqrt{4}-2=0$ и $\lim_{x\to 3} (x-3)=3-3=0$, то в заданном пределе мы имеем неопределённость вида $\frac{0}{0}$. Раскрыть эту неопределённость нам мешает разность $\sqrt{7-x}-2$. Для того, чтобы избавляться от подобных иррациональностей, применяют умножение на так называемое "сопряжённое выражение". Как действует такое умножение мы сейчас и рассмотрим. Умножим $\sqrt{7-x}-2$ на $\sqrt{7-x}+2$:

$$(\sqrt{7-x}-2)(\sqrt{7-x}+2)$$

Чтобы раскрыть скобки применим , подставив в правую часть упомянутой формулы $a=\sqrt{7-x}$, $b=2$:

$$(\sqrt{7-x}-2)(\sqrt{7-x}+2)=(\sqrt{7-x})^2-2^2=7-x-4=3-x.$$

Как видите, если умножить числитель на $\sqrt{7-x}+2$, то корень (т.е. иррациональность) в числителе исчезнет. Вот это выражение $\sqrt{7-x}+2$ и будет сопряжённым к выражению $\sqrt{7-x}-2$. Однако мы не вправе просто взять и умножить числитель на $\sqrt{7-x}+2$, ибо это изменит дробь $\frac{\sqrt{7-x}-2}{x-3}$, стоящую под пределом. Умножать нужно одовременно и числитель и знаменатель:

$$ \lim_{x\to 3}\frac{\sqrt{7-x}-2}{x-3}= \left|\frac{0}{0}\right|=\lim_{x\to 3}\frac{(\sqrt{7-x}-2)\cdot(\sqrt{7-x}+2)}{(x-3)\cdot(\sqrt{7-x}+2)}$$

Теперь вспомним, что $(\sqrt{7-x}-2)(\sqrt{7-x}+2)=3-x$ и раскроем скобки. А после раскрытия скобок и небольшого преобразования $3-x=-(x-3)$ сократим дробь на $x-3$:

$$ \lim_{x\to 3}\frac{(\sqrt{7-x}-2)\cdot(\sqrt{7-x}+2)}{(x-3)\cdot(\sqrt{7-x}+2)}= \lim_{x\to 3}\frac{3-x}{(x-3)\cdot(\sqrt{7-x}+2)}=\\ =\lim_{x\to 3}\frac{-(x-3)}{(x-3)\cdot(\sqrt{7-x}+2)}= \lim_{x\to 3}\frac{-1}{\sqrt{7-x}+2} $$

Неопределенность $\frac{0}{0}$ исчезла. Сейчас можно легко получить ответ данного примера:

$$ \lim_{x\to 3}\frac{-1}{\sqrt{7-x}+2}=\frac{-1}{\sqrt{7-3}+2}=-\frac{1}{\sqrt{4}+2}=-\frac{1}{4}.$$

Замечу, что сопряжённое выражение может менять свою структуру - в зависимости от того, какую именно иррациональность оно должно убрать. В примерах №4 и №5 (см. вторую часть данной темы) будет использован иной вид сопряжённого выражения.

Ответ : $\lim_{x\to 3}\frac{\sqrt{7-x}-2}{x-3}=-\frac{1}{4}$.

Пример №2

Найти $\lim_{x\to 2}\frac{3x^2-5x-2}{\sqrt{x^2+5}-\sqrt{7x^2-19}}$.

Так как $\lim_{x\to 2}(\sqrt{x^2+5}-\sqrt{7x^2-19})=\sqrt{2^2+5}-\sqrt{7\cdot 2^2-19}=3-3=0$ и $\lim_{x\to 2}(3x^2-5x-2)=3\cdot2^2-5\cdot 2-2=0$, то мы имеем дело с неопределённостью вида $\frac{0}{0}$. Избавимся от иррациональности в знаменателе данной дроби. Для этого доможим и числитель и знаменатель дроби $\frac{3x^2-5x-2}{\sqrt{x^2+5}-\sqrt{7x^2-19}}$ на выражение $\sqrt{x^2+5}+\sqrt{7x^2-19}$, сопряжённое к знаменателю:

$$ \lim_{x\to 2}\frac{3x^2-5x-2}{\sqrt{x^2+5}-\sqrt{7x^2-19}}=\left|\frac{0}{0}\right|= \lim_{x\to 2}\frac{(3x^2-5x-2)(\sqrt{x^2+5}+\sqrt{7x^2-19})}{(\sqrt{x^2+5}-\sqrt{7x^2-19})(\sqrt{x^2+5}+\sqrt{7x^2-19})} $$

Вновь, как и в примере №1, нужно использовать для раскрытия скобок. Подставив в правую часть упомянутой формулы $a=\sqrt{x^2+5}$, $b=\sqrt{7x^2-19}$, получим такое выражение для знаменателя:

$$ \left(\sqrt{x^2+5}-\sqrt{7x^2-19}\right)\left(\sqrt{x^2+5}+\sqrt{7x^2-19}\right)=\\ =\left(\sqrt{x^2+5}\right)^2-\left(\sqrt{7x^2-19}\right)^2=x^2+5-(7x^2-19)=-6x^2+24=-6\cdot(x^2-4) $$

Вернёмся к нашему пределу:

$$ \lim_{x\to 2}\frac{(3x^2-5x-2)(\sqrt{x^2+5}+\sqrt{7x^2-19})}{(\sqrt{x^2+5}-\sqrt{7x^2-19})(\sqrt{x^2+5}+\sqrt{7x^2-19})}= \lim_{x\to 2}\frac{(3x^2-5x-2)(\sqrt{x^2+5}+\sqrt{7x^2-19})}{-6\cdot(x^2-4)}=\\ =-\frac{1}{6}\cdot \lim_{x\to 2}\frac{(3x^2-5x-2)(\sqrt{x^2+5}+\sqrt{7x^2-19})}{x^2-4} $$

В примере №1 практически сразу после домножения на сопряжённое выражение произошло сокращение дроби. Здесь перед сокращением придётся разложить на множители выражения $3x^2-5x-2$ и $x^2-4$, а уж потом перейти к сокращению. Чтобы разложить на множители выражение $3x^2-5x-2$ нужно использовать . Для начала решим квадратное уравнение $3x^2-5x-2=0$:

$$ 3x^2-5x-2=0\\ \begin{aligned} & D=(-5)^2-4\cdot3\cdot(-2)=25+24=49;\\ & x_1=\frac{-(-5)-\sqrt{49}}{2\cdot3}=\frac{5-7}{6}=-\frac{2}{6}=-\frac{1}{3};\\ & x_2=\frac{-(-5)+\sqrt{49}}{2\cdot3}=\frac{5+7}{6}=\frac{12}{6}=2. \end{aligned} $$

Подставляя $x_1=-\frac{1}{3}$, $x_2=2$ в , будем иметь:

$$ 3x^2-5x-2=3\cdot\left(x-\left(-\frac{1}{3}\right)\right)(x-2)=3\cdot\left(x+\frac{1}{3}\right)(x-2)=\left(3\cdot x+3\cdot\frac{1}{3}\right)(x-2) =(3x+1)(x-2). $$

Теперь настал черёд разложить на множители выражение $x^2-4$. Воспользуемся , подставив в неё $a=x$, $b=2$:

$$ x^2-4=x^2-2^2=(x-2)(x+2) $$

Используем полученные результаты. Так как $x^2-4=(x-2)(x+2)$ и $3x^2-5x-2=(3x+1)(x-2)$, то:

$$ -\frac{1}{6}\cdot \lim_{x\to 2}\frac{(3x^2-5x-2)(\sqrt{x^2+5}+\sqrt{7x^2-19})}{x^2-4} =-\frac{1}{6}\cdot \lim_{x\to 2}\frac{(3x+1)(x-2)(\sqrt{x^2+5}+\sqrt{7x^2-19})}{(x-2)(x+2)} $$

Сокращая на скобку $x-2$ получим:

$$ -\frac{1}{6}\cdot \lim_{x\to 2}\frac{(3x+1)(x-2)(\sqrt{x^2+5}+\sqrt{7x^2-19})}{(x-2)(x+2)} =-\frac{1}{6}\cdot \lim_{x\to 2}\frac{(3x+1)(\sqrt{x^2+5}+\sqrt{7x^2-19})}{x+2}. $$

Всё! Неопределённость исчезла. Ещё один шаг и мы приходим к ответу:

$$ -\frac{1}{6}\cdot \lim_{x\to 2}\frac{(3x+1)(\sqrt{x^2+5}+\sqrt{7x^2-19})}{x+2}=\\ =-\frac{1}{6}\cdot\frac{(3\cdot 2+1)(\sqrt{2^2+5}+\sqrt{7\cdot 2^2-19})}{2+2}= -\frac{1}{6}\cdot\frac{7(3+3)}{4}=-\frac{7}{4}. $$

Ответ : $\lim_{x\to 2}\frac{3x^2-5x-2}{\sqrt{x^2+5}-\sqrt{7x^2-19}}=-\frac{7}{4}$.

В следующем примере рассмотрим случай, когда иррациональности будут присутствовать как в числителе, так и в знаменателе дроби.

Пример №3

Найти $\lim_{x\to 5}\frac{\sqrt{x+4}-\sqrt{x^2-16}}{\sqrt{x^2-3x+6}-\sqrt{5x-9}}$.

Так как $\lim_{x\to 5}(\sqrt{x+4}-\sqrt{x^2-16})=\sqrt{9}-\sqrt{9}=0$ и $\lim_{x\to 5}(\sqrt{x^2-3x+6}-\sqrt{5x-9})=\sqrt{16}-\sqrt{16}=0$, то мы имеем неопределённость вида $\frac{0}{0}$. Так как в данном случае корни наличествуют и в знаменателе, и в числителе, то дабы избавиться от неопределённости придется домножать сразу на две скобки. Во-первых, на выражение $\sqrt{x+4}+\sqrt{x^2-16}$, сопряжённое числителю. А во-вторых на выражение $\sqrt{x^2-3x+6}-\sqrt{5x-9}$, сопряжённое знаменателю.

$$ \lim_{x\to 5}\frac{\sqrt{x+4}-\sqrt{x^2-16}}{\sqrt{x^2-3x+6}-\sqrt{5x-9}}=\left|\frac{0}{0}\right|=\\ =\lim_{x\to 5}\frac{(\sqrt{x+4}-\sqrt{x^2-16})(\sqrt{x+4}+\sqrt{x^2-16})(\sqrt{x^2-3x+6}+\sqrt{5x-9})}{(\sqrt{x^2-3x+6}-\sqrt{5x-9})(\sqrt{x^2-3x+6}+\sqrt{5x-9})(\sqrt{x+4}+\sqrt{x^2-16})} $$ $$ -x^2+x+20=0;\\ \begin{aligned} & D=1^2-4\cdot(-1)\cdot 20=81;\\ & x_1=\frac{-1-\sqrt{81}}{-2}=\frac{-10}{-2}=5;\\ & x_2=\frac{-1+\sqrt{81}}{-2}=\frac{8}{-2}=-4. \end{aligned} \\ -x^2+x+20=-1\cdot(x-5)(x-(-4))=-(x-5)(x+4). $$

Для выражения $x^2-8x+15$ получим:

$$ x^2-8x+15=0;\\ \begin{aligned} & D=(-8)^2-4\cdot 1\cdot 15=4;\\ & x_1=\frac{-(-8)-\sqrt{4}}{2}=\frac{6}{2}=3;\\ & x_2=\frac{-(-8)+\sqrt{4}}{2}=\frac{10}{2}=5. \end{aligned}\\ x^2+8x+15=1\cdot(x-3)(x-5)=(x-3)(x-5). $$

Подставляя полученные разожения $-x^2+x+20=-(x-5)(x+4)$ и $x^2+8x+15=(x-3)(x-5)$ в рассматриваемый предел, будем иметь:

$$ \lim_{x\to 5}\frac{(-x^2+x+20)(\sqrt{x^2-3x+6}+\sqrt{5x-9})}{(x^2-8x+15)(\sqrt{x+4}+\sqrt{x^2-16})}= \lim_{x\to 5}\frac{-(x-5)(x+4)(\sqrt{x^2-3x+6}+\sqrt{5x-9})}{(x-3)(x-5)(\sqrt{x+4}+\sqrt{x^2-16})}=\\ =\lim_{x\to 5}\frac{-(x+4)(\sqrt{x^2-3x+6}+\sqrt{5x-9})}{(x-3)(\sqrt{x+4}+\sqrt{x^2-16})}= \frac{-(5+4)(\sqrt{5^2-3\cdot 5+6}+\sqrt{5\cdot 5-9})}{(5-3)(\sqrt{5+4}+\sqrt{5^2-16})}=-6. $$

Ответ : $\lim_{x\to 5}\frac{\sqrt{x+4}-\sqrt{x^2-16}}{\sqrt{x^2-3x+6}-\sqrt{5x-9}}=-6$.

В следующей (второй) части рассмотрим ещё пару примеров, в которых сопряжённое выражение будет иметь иной вид, нежели в предыдущих задачах. Главное, помните, что цель использования сопряжённого выражения - избавиться от иррациональности, вызывающей неопределённость.

Понравилась статья? Поделиться с друзьями: