Абиотические физические факторы примеры. Важнейшие абиотические факторы и адаптация к ним живых организмов

Введение

Каждый день вы, спеша по делам, ходите по улице, ежась от холода или обливаясь потом от жары. А после рабочего дня идете в магазин, покупаете продукты питания. Выйдя из магазина, спешно останавливаете проезжающую маршрутку и бессильно опускаетесь на ближайшее свободное место. Для многих это знакомый образ жизни, не так ли? А вы никогда не задумывались о том, как протекает жизнь с точки зрения экологии? Существование человека, растений и животных возможно лишь благодаря их взаимодействию. Не обходится оно и без влияния неживой природы. У каждого из этих типов воздействия есть свое обозначение. Итак, существует всего три вида влияния на окружающую среду. Это антропогенные, биотические и абиотические факторы. Давайте рассмотрим каждый из них и его воздействие на природу.

1. Антропогенные факторы - влияние на природу всех форм деятельности человека

Когда упоминается этот термин, в голову не приходит ни одной положительной мысли. Даже когда люди делают что-нибудь хорошее для животных и растений, то происходит это из-за последствий ранее сделанного плохого (к примеру, браконьерства).

Антропогенные факторы (примеры):

  • Высушивание болот.
  • Удобрение полей пестицидами.
  • Браконьерство.
  • Промышленные отходы (фото).

Вывод

Как видите, в основном человек наносит окружающей среде только вред. И из-за увеличения хозяйственного и промышленного производства даже природоохранные меры, учреждаемые редкими добровольцами (создание заповедников, экологические митинги), уже перестают помогать.

2. Биотические факторы - влияние живой природы на разнообразные организмы

Проще говоря, это взаимодействие растений и животных между собой. Оно может быть как положительным, так и отрицательным. Существует несколько видов такого взаимодействия:

1. Конкуренция - такие взаимосвязи между особями одного или разных видов, при которых использование определенного ресурса одним из них уменьшает его доступность для других. В общем, при конкуренции животные или растения борются между собой за свой кусок хлеба

2. Мутуализм - такая взаимосвязь, при которой каждый из видов получает определенную пользу. Проще говоря, когда растения и/или животные гармонично дополняют друг друга.

3. Комменсализм - такая форма симбиоза между организмами разных видов, при которой один из них использует жилище или организм хозяина как место поселения и может питаться остатками пищи или продуктами его жизнедеятельности. При этом он не приносит хозяину ни вреда, ни пользы. В общем, маленькое незаметное дополнение.

Биотические факторы (примеры):

Сосуществование рыб и коралловых полипов, жгутиковых простейших и насекомых, деревьев и птиц (например, дятлов), скворцов-майн и носорогов.

Вывод

Несмотря на то, что биотические факторы могут приносить вред животным, растениям и человеку, от них есть и очень большая польза.

3. Абиотические факторы - воздействие неживой природы на разнообразные организмы

Да, и неживая природа тоже играет немаловажную роль в жизненных процессах животных, растений и человека. Пожалуй, самым главным абиотическим фактором является погода.

Абиотические факторы: примеры

Абиотические факторы - это температура, влажность, освещенность, соленость воды и почвы, а также воздушная среда и ее газовый состав.

Вывод

Абиотические факторы могут наносить вред животным, растениям и человеку, но все-таки в основном они приносят им пользу

Итог

Единственный фактор, не приносящий никому пользы - это антропогенный. Да, человеку он тоже не приносит ничего хорошего, хотя тот уверен, что изменяет природу для своего блага, и не задумывается, во что превратится для него и его потомков это "благо" через десяток лет. Человеком уже полностью уничтожены многие виды животных и растений, которые имели свое место в мировой экосистеме. Биосфера Земли похожа на фильм, в котором нет второстепенных ролей, все они являются главными. А вот теперь представьте, что некоторые из них убрали. Что получится в фильме? Вот так и в природе: если исчезнет самая малая песчинка, рухнет великое здание Жизни.

К абиотическим факторам среды относят субстрат и его состав, влажность, свет и другие виды излучений в природе, и его состав, и микроклимат. Следует отметить, что температуру, состав воздуха, влажность и свет можно условно отнести к «индивидуальным», а субстрат, климат, микроклимат и др. - к «комплексным» факторам.

Субстрат (буквально) - это место прикрепления. Например, для древесных и травянистых форм растений, для почвенных микроорганизмов это почва. В ряде случаев субстрат можно считать синонимом среды обитания (например, почва - это эдафическая среда обитания). Субстрат характеризуется определенным химическим составом, который оказывает влияние на организмы. Если субстрат понимается как среда обитания, то он в этом случае представляет собой комплекс характерных для него биотических и абиотических факторов, к которым приспосабливается тот или иной организм.

Характеристика температуры как абиотического фактора среды

Температура - это экологический фактор, связанный со средней кинетической энергией движения частиц и выражающийся в градусах различных шкал. Наиболее распространенной является шкала в градусах Цельсия (°С), в основу которой положена величина расширения воды (температура кипения воды составляет 100°С). В СИ принята абсолютная шкала температур, для которой температура кипения воды Т кип. воды = 373 К.

Очень часто температура является лимитирующим фактором, определяющим возможность (невозможность) обитания организмов в той или иной среде обитания.

По характеру температуры тел а все организмы разделяют на две группы: пойкилотермные (температура их тела зависит от температуры окружающей среды и является практически такой же, как и температура среды) и гомойотермные (температура их тела не зависит от температуры внешней среды и является более или менее постоянной: если и колеблется, то в небольших пределах - доли градуса).

К пойкилотермным относятся растительные организмы, бактерии, вирусы, грибы, одноклеточные животные, а также животные с относительно низким уровнем организации (рыбы, членистоногие и т. д.).

К гомойотермным относятся птицы и млекопитающие, включая человека. Постоянная температура тела уменьшает зависимость организмов от температуры внешней среды, дает возможность расселения по большему числу экологических ниш как в широтном, так и в вертикальном расселении по планете . Однако и помимо гомойотермности организмы вырабатывают приспособления для преодоления воздействия низких температур.

По характеру перенесения низких температур растения разделяют на теплолюбивые и холодостойкие. К теплолюбивым относят растения юга (бананы, пальмы, южные сорта яблонь, груш, персики, виноград и др.). К холодостойким относят растения средних и северных широт, а также растения, произрастающие высоко в горах (например, мхи, лишайники, сосна, ель, пихта, рожь и т. д.). В средней полосе России выращивают сорта морозостойких фруктовых деревьев, которые специально выводят селекционеры. Первые большие успехи в этой области были достигнуты И. В. Мичуриным и другими народными селекционерами.

Норма реакции организма на температурный фактор (для отдельных организмов) часто узка, т.е. конкретный организм может нормально функционировать в достаточно узком интервале температур. Так, морские позвоночные гибнут при повышении температуры до 30-32°С. Но для живого вещества в целом границы температурного воздействия, при котором сохраняется жизнь, очень широки. Так, в Калифорнии в горячих источниках живет вид рыб, нормально функционирующий при температуре 52°С, а термостойкие бактерии, обитающие в гейзерах, выдерживают температуру до 80°С (это «нормальная» температура для них). В ледниках при температуре -44°С обитают некоторые и т. д.

Роль температуры как экологического фактора сводится к тому, что она влияет на обмен веществ: при низких температурах скорость биоорганических реакций сильно замедляется, а при высоких - значительно увеличивается, что приводит к нарушению равновесия в протекании биохимических процессов, а это вызывает различные заболевания, а иногда и летальный исход.

Влияние температуры, на растительные организмы

Температура не только является фактором, определяющим возможность обитания растений на той или иной территории, но она для некоторых растений оказывает влияние на процесс их развития. Так, озимые сорта пшеницы и ржи, которые при прорастании не подверглись процессу «яровизации» (воздействию низких температур), не дают семян при их произрастании в самых благоприятных условиях.

Для перенесения воздействия низких температур растения имеют различные приспособления.

1. В зимний период цитоплазма теряет воду и накапливает вещества, обладающие эффектом «антифриза» (это моносахара, глицерин и другие вещества) - концентрированные растворы таких веществ замерзают только при низких температурах.

2. Переход растений в стадию (фазу), устойчивую к воздействию низких температур - стадия спор, семян, клубней, луковиц, корневищ, корнеплодов и т. д. Древесные и кустарниковые формы растений сбрасывают листья, стебли покрываются пробкой, обладающей высокими теплоизоляционными свойствами, а в живых клетках накапливаются вещества-антифризы.

Влияние температуры на животные организмы

Температура по-разному влияет на пойкилотермных и гомойотермных животных.

Пойкилотермные животные активны только в период оптимальных для их жизнедеятельности температур. В период низких температур они впадают в спячку (земноводные, пресмыкающиеся, членистоногие и др.). Некоторые насекомые перезимовывают или в виде яиц, или в виде куколок. Нахождение организма в спячке характеризуется состоянием анабиоза, при котором процессы обмена очень сильно заторможены и организм может длительное время обходиться без пищи. В спячку пойкилотермные животные могут впадать и под воздействием высоких температур. Так, животные в нижних широтах в жаркое время дня находятся в норах, а период их активной жизнедеятельности приходится на раннее утро или поздний вечер (либо они ведут ночной образ жизни).

В спячку животные организмы впадают не только за счет воздействия температуры, но и за счет других факторов. Так, медведь (гомойотермное животное) впадает в спячку зимой из-за недостатка пищи.

Гомойотермные животные в меньшей степени в своей жизнедеятельности зависят от температуры, но температура влияет на них с точки зрения наличия (отсутствия) кормовой базы. Эти животные имеют следующие приспособления к преодолению воздействия низких температур:

1) животные перемещаются из более холодных областей в более теплые (перелеты птиц, миграции млекопитающих);

2) изменяют характер покрова (летний мех или оперение заменяются на более густой зимний; накапливают большой слой жира - дикие свиньи, тюлени и др.);

3) впадают в спячку (например, медведь).

Гомойотермные животные имеют приспособления для снижения воздействия температур (как повышенных, так и пониженных). Так, у человека имеются потовые железы, которые изменяют характер секреции при повышенных температурах (количество секрета увеличивается), изменяется просвет кровеносных сосудов в коже (при низких температурах он уменьшается, а при высоких - увеличивается) и т. д.

Излучения как абиотический фактор

И в жизни растений, и в жизни животных огромную роль играют различные излучения, которые или попадают на планету извне (солнечные лучи), или выделяются из недр Земли. Здесь рассмотрим в основном солнечные излучения.

Солнечные излучения неоднородны и состоят из электромагнитных волн разной длины, а следовательно, обладают и различной энергией. Поверхности Земли достигают лучи как видимого, так и невидимого спектра. К лучам невидимого спектра относятся инфракрасные и ультрафиолетовые лучи, а лучи видимого спектра имеют семь наиболее различимых лучей (от красного до фиолетового). квантов излучений увеличивается от инфракрасного до ультрафиолетового (т. е. ультрафиолетовые лучи содержат кванты наиболее коротких волн и наибольшей энергии).

Солнечные лучи имеют несколько экологически важных функций:

1) благодаря солнечным лучам на поверхности Земли реализуется определенный температурный режим, имеющий широтный и вертикальный зональный характер;

При отсутствии воздействия человека состав воздуха, тем не менее, может различаться в зависимости от высоты над уровнем моря (с высотой содержание кислорода и углекислого газа уменьшается, так как эти газы тяжелее азота). Воздух приморских районов обогащен парами воды, в которых содержатся морские соли в растворенном состоянии. Воздух леса отличается от воздуха полей примесями соединений, выделяемых различными растениями (так, воздух соснового бора содержит большое количество смолистых веществ и эфиров, убивающих болезнетворные микроорганизмы, поэтому этот воздух является целебным для больных туберкулезом).

Важнейшим комплексным абиотическим фактором является климат.

Климат - это совокупный абиотический фактор, включающий в себя определенный состав и уровень солнечной радиации, связанный с ним уровень температурного и влажностного воздействия и определенный режим ветров. Климат зависит также от характера растительности, произрастающей на данной территории, и от рельефа местности.

На Земле наблюдается определенная широтная и вертикальная климатическая зональность. Различают влажный тропический, субтропический, резко континентальный и другие разновидности климата.

Повторите сведения о различных видах климата по учебнику физической географии. Рассмотрите особенности климата той территории, на которой вы живете.

Климат как совокупный фактор формирует тот или иной тип растительности (флоры) и тесно связанный с ним тип фауны. Большое влияние на климат оказывают поселения людей. Климат больших городов отличается от климата пригородных зон.

Сравните температурный режим города, в котором вы живете, и режим температур области, где находится город.

Как правило, температура в черте города (особенно в центре) всегда выше, чем в области.

С климатом тесно связан микроклимат. Причиной возникновения микроклимата являются различия в рельефе на данной территории, наличие водоемов, что приводит к изменению условий на разных территориях данной климатической зоны. Даже на относительно небольшой территории дачного участка на отдельных его частях могут возникать различные условия для произрастания растений из-за разных условий освещения.

Лекция №5

Экологические факторы окружающей среды. Абиотические факторы

    Понятие экологический фактор

    Классификация

    Абиотические факторы

    1. Общие закономерности распределения уровней и региональных режимсов экологических факторов

      Космические факторы

      Лучистая энергия Солнца и её значение для организмов

      Абиотические факторы наземной среды (температура, осадки, влажность, движение воздушных масс, давление, химические факторы, пожары)

      Абиотические факторы водной среды (температурная стратификация, прозрачность, соленость, растворенные газы, кислотность)

      Абиотические факторы почвенного покрова (состав литосферы, понятия «почва» и «плодородие», состав и структура почв)

      Биогенные вещества как экологический фактор

1. Экологический фактор - это любой элемент окружающей среды, способный оказывать прямое или косвенное воздействие на живой организм хотя бы на одном из этапов его индивидуального развития, или любое условие среды, на которое организм отвечает приспособительными реакциями.

В общем случае фактор - это движущая сила какого-либо процесса или влияющее на организм условие. Окружающая среда характеризуется огромным разнообразием экологических факторов, в том числе и пока не известных. Каждый живой организм в течение всей своей жизни находится под воздействием множества экологических факторов, различающихся происхождением, качеством, количеством, временем воздействия, т.е. режимом. Таким образом, окружающая среда - это фактически набор воздействующих на организм экологических факторов.

Но если окружающая среда, как мы уже сказали, не имеет количественных характеристик, то каждый отдельный фактор (будь то влажность, температура, давление, белки пищи, количество хищников, химическое соединение в воздухе и т. п.) характеризуется мерой и числом, т. е. его можно измерить во времени и пространстве (в динамике), сравнить с каким-либо эталоном, подвергнуть моделированию, предсказанию (прогнозу) и в конечном счете изменить в заданном, направлении. Управлять можно только тем, что имеет меру и число.

Для инженера предприятия, экономиста, санитарного врача или следователя прокуратуры требование "охранять окружающую среду" не имеет смысла. А если задача или условие выражены в количественной форме, в виде каких-либо величин или неравенств (например: С i < ПДК i или M i < ПДВ i то они вполне понятны и в практическом, и в юридическом отношении. Задача предприятия - не "охранять природу", а с помощью инженерных или организационных приемов выполнить названное условие, т. е. именно таким путем управлять качеством окружающей среды, чтобы она не представляла угрозы здоровью людей. Обеспечение выполнения этих условий - задача контролирующих служб, а при невыполнении их предприятие несет ответственность.

2. Классификация экологических факторов

Любая классификация какого-либо множества это метод его познания или анализа. Предметы и явления можно классифицировать по различным признакам, исходя из поставленных задач. Из многих существующих классификаций экологических факторов для задач данного курса целесообразно использовать следующую (рис. 1).

Все экологические факторы в общем случае могут быть сгруппированы в две крупные категории: факторы неживой, или косной, природы, называемые иначе абиотическими или абиогенными, и факторы живой природы - биотические , или биогенные . Но по своему происхождению обе группы могут быть как природными , так и антропогенными , т. е. связанными с влиянием человека. Иногда различают антропические и антропогенные факторы. К первым относят лишь прямые воздействия человека на природу (загрязнение, промысел, борьбу с вредителями), а ко вторым - преимущественно косвенные последствия, связанные с изменением качества окру­жающей среды.

Рис. 1. Классификация экологических факторов

Человек в своей деятельности не только меняет режимы природных экологических факторов, но и создает новые, например, синтезируя новые химические соединения - ядохимикаты, удобрения, лекарства, синтетические материалы и др. В числе факторов неживой природы присутствуют физические (космические, климатические, орографические, почвенные) и химические (компоненты воздуха, воды, кислотность и иные химические свойства почвы, примеси промышленного происхождения). К биотическим факторам относятся зоогенные (влияние животных), фитогенные (влияние растений), микробогенные (влияние микроорганизмов). В некоторых классификациях к биотическим факторам относят и все антропогенные факторы, включая физические и химические.

Наряду с рассмотренной, существуют и другие классификации экологических факторов. Выделяют факторы зависимые и независимые от численности и плотности организмов . Например, климатические факторы не зависят от численности животных, растений, а массовые заболевания, вызываемые патогенными микроорганизмами (эпидемии) у животных или растений, безусловно, связаны с их численностью: эпидемии возникают при тесном контакте между индивидуумами или при их общем ослаблении из-за нехватки корма, когда возможна быстрая передача болезнетворного начала от одной особи к другой, а также утрачена сопротивляемость к патогену.

Макроклимат от численности животных не зависит, а микроклимат может существенно изменяться в результате их жизнедеятельности. Если, например, насекомые при их высокой численности в лесу уничтожат большую часть хвои или листвы деревьев, то здесь изменится ветровой режим, освещенность, температура, качество и количество корма, что скажется на состоянии последующих поколений тех же или других, обитающих здесь животных. Массовые размножения насекомых привлекают насекомых-хищников и насекомоядных птиц. Урожаи плодов и семян влияют на изменение численности мышевидных грызунов, белки и ее хищников, а также многих птиц, питающихся семенами.

Можно делить все факторы на регулирующие (управляющие) и регулируемые (управляемые), что также легко понять в связи с приведенными выше примерами.

Оригинальную классификацию экологических факторов предложил А. С. Мончадский. Он исходил из представлений о том, что все приспособительные реакции организмов к тем или иным факторам связаны со степенью постоянства их воздействия, или, иначе говоря, с их периодичностью. В частности, он выделял:

1. первичные периодические факторы (те, которым свойственна правильная периодичность, связанная с вращением Земли: смена времен года, суточная и сезонная смена освещенности и температуры); эти факторы изначально присущи нашей планете и зарождающаяся жизнь должна была сразу к ним приспосабливаться;

2. вторичные периодические факторы (они являются производными от первичных); к ним относятся все физические и многие химические факторы, например влажность, температура, осадки, динамика численности растений и животных, содержание растворенных газов в воде и др.;

3. непериодические факторы, которым не свойственна правильная периодичность (цикличность); таковы, например, факторы, связанные с почвой, или разного рода стихийные явления.

Разумеется, "непериодично" лишь само тело почвы, подстилающие ее грунты, а динамика температуры, влажности и многих других свойств почвы также связана с первичными периодическими факторами.

Антропогенные факторы однозначно относятся к непериодическим. В числе таких факторов непериодического действия прежде всего - загрязняющие вещества, содержащиеся в промышленных выбросах и сбросах. К природным периодическим и непериодическим факторам живые организмы в процессе эволюции способны вырабатывать адаптации (например, спячка, зимовка и т. п.), а к изменению содержания примесей в воде или воздухе растения и животные, как правило, не могут приобрести и наследственно закрепить соответствующие адаптации. Правда, некоторые беспозвоночные, например растениеядные клещи из класса паукообразных, имеющие в условиях закрытого грунта десятки поколений в году, способны при постоянном применении против них одних и тех же ядохимикатов образовывать устойчивые к яду расы путем отбора особей, наследующих такую устойчивость.

Необходимо подчеркнуть, что к понятию "фактор" следует подходить дифференцированно, учитывая, что факторы могут быть как прямого (непосредственного), так и опосредованного действия. Различия между ними состоят в том, что фактор прямого действия можно выразить количественно, в то время как факторы непрямого действия - нет. Например, климат или рельеф могут быть обозначены в основном словесно, но они определяют режимы факторов прямого действия - влажности, длины светового дня, температуры, физико-химических характеристик почвы и др.

3. Абиотические факторы

3.1. Общие закономерности распределения уровней и региональных режимов экологических факторов

Географическая оболочка Земли (как и Общие биосфера) неоднородна в пространстве, она дифференцирована на отличающиеся друг от друга территории. Ее последовательно делят на физико-географические пояса, географические зоны, внутризональные горные и равнинные области и подобласти и подзоны и т. д.

Физико-географический пояс - это крупнейшая таксономическая единица географической оболочки, слагающаяся из ряда географических зон, близких по тепловому балансу и режиму увлажнения.

Выделяют, в частности, арктический и антарктический, субарктический и субантарктический, северные и южные умеренные и субтропические, субэкваториальный и экваториальный пояса.

Географическая (она же - природная, ландшафтная) зона - это значительная часть физико-географического пояса с особым характером геоморфологических процессов, с особыми типами климата, растительности, почв, животного и растительного мира.

Например, в пределах северного полушария выделяют следующие зоны: ледяную, тундры, лесотундры, тайги, смешанных лесов Русской равнины, муссонных лесов Дальнего Востока, лесостепную, степную, пустынные умеренного и субтропического пояса, средиземноморскую и др. Зоны имеют преимущественно (хотя далеко не всегда) вытянутые в широком плане очертания и характеризуются сход­ными природными условиями, определенной последовательностью в зависимости от широтного положения. Таким образом, широтная географическая зональность - это закономерное изменение, физико-географических процессов, компонентов и комплексов от экватора к полюсам. Понятно, что речь идет в первую очередь о совокупности факторов, образующих климат.

Зональность обусловлена главным образом характером распределения солнечной энергии по широтам, т. е. с уменьшением ее прихода от экватора к полюсам и неравномерностью увлажнения. Положение о зональности географической оболочки (а следовательно, и биосферы) было сформулировано известным русским почвоведом В. В. Докучаевым.

Наряду с широтной существует также типичная для горных районов вертикальная (или высотная) зональность, т. е. смена растительности, животного мира, почв, климатических условий, по мере подъема от уровня моря, связанная в основном с изменением теплового баланса: перепад температуры воздуха составляет 0,6-1,0 °С на каждые 100 м высоты.

Разумеется, в природе не все столь однозначно закономерно: вертикальная зональность может осложняться экспозицией склона, а широтная - иметь зоны, вытянутые в субмеридиональном направлении, как, например, в условиях горных хребтов.

Однако в целом от теплового баланса зависят режимы и динамика важнейших абиотических факторов, т. е. климат, процессы почвообразования, типы растительности, видовой состав и динамика численности животного мира и др.

Географическая зональность присуща не только материкам, но и Мировому океану, в пределах которого разные зоны различаются количеством приходящей солнечной радиации, балансами испарения и осадков, температурой воды, особенностями поверхностных и глубинных течений, а следовательно, и миром живых организмов.

3.2. Космические факторы

Биосфера, как среда обитания живых организмов, не изолирована от сложных процессов факторы протекающих в космическом пространстве, причем связанных непосредственно не только с Солнцем. На Землю попадает космическая пыль, метеоритное вещество. Земля периодически сталкивается с астероидами, сближается с кометами. Через Галактику проходят вещества и волны, возникающие в результате вспышек сверхновых звезд. Разумеется, наша планета наиболее тесно связана с процессами, происходящими на Солнце- с так называемой солнечной активностью. Суть этого явления состоит превращении энергии, накапливающейся в магнитных поясах Солнца, в энергию движения газовых масс, быстрых частиц, коротковолнового электромагнитного излучения.

Наиболее интенсивные процессы наблюдаются в центрах активности, называемых активными областями, в которых наблюдается усиление магнитного поля, возникают области повышенной яркости, а также так называемые солнечные пятна. В активных областях могут происходить взрывоподобные выделения энергии, сопровождающиеся выбросами плазмы, внезапным появлением солнечных космических лучей, усилением коротковолнового и радиоизлучения. Известно, что изменения уровня вспышечной активности имеют циклический характер с обычным циклом, равным 22 годам, хотя известны колебания периодичностью от 4,3 до 1850 лет. Солнечная активность влияет на ряд жизненных процессов на Земле - от возникновения эпидемий и всплесков рождаемости до крупных климатических преобразований. Это было доказано еще в 1915 г. русским ученым А. Л. Чижевским, основателем новой науки - гелиобиологии (от греч. хелиос - Солнце), рассматривающей воздействие изменений активности Солнца на биосферу Земли.

3.3. Лучистая энергия Солнца и её значение для организмов

Энергия солнечного излучения распространяется в пространстве в виде электромагнитных волн. Около 99 % ее составляют лучи с длиной волны 170-4000 нм, в том числе 48 % приходится на видимую часть спектра с длиной волны 400-760 нм, а 45 % - на инфракрасную (длина волны от 750 нм до 10~3 м), около 7 % -на ультрафиолетовую (длина волны менее 400 нм). В процессах фотосинтеза наиболее важную роль играет фотосинтетически активная радиация (380-710 нм).

Количество энергии солнечного излучения, поступающего к Земле (к верхней границе атмосферы), практически постоянно и оценивается значением 1370 Вт/м2. Эта величина называется солнечной постоянной. Однако приход энергии солнечного излучения к поверхности самой Земли существенно колеблется в зависимости от ряда условий: высоты Солнца над горизонтом, широты, состояния атмосферы и др. Форма Земли (геоид) близка к шарообразной. Поэтому наибольшее количество солнечной энергии поглощается в низких широтах (экваториальный пояс), где температура воздуха у земной поверхности, как правило, выше, чем в средних и высоких широтах. Приход энергии солнечного излучения в разные районы земного шара и ее перераспределение определяют климатические условия этих районов.

Проходя через атмосферу, солнечное излучение рассеивается на молекулах газов, на взвешенных примесях (твердых и жидких), поглощается водяными парами, озоном, диоксидом углерода, пылевидными частицами. Рассеянное солнечное излучение частично доходит до земной поверхности. Его видимая часть создает свет днем при отсутствии прямых солнечных лучей, например при сильной облачности. Общий приход теплоты к поверхности Земли зависит от суммы прямого и рассеянного излучения, которая увеличивается от полюсов к экватору.

Энергия солнечного излучения не только поглощается поверхностью Земли, но и отражается ею в виде потока длинноволнового излучения. Более светло окрашенные поверхности отражают свет более интенсивно, чем темные. Так, чистый снег отражает 80-95 %, загрязненный - 40-50, черноземная почва - 5-14, светлый песок - 35-45, полог леса - 10-18%. Отношение отражаемого поверхностью потока солнечного излучения к поступившему называется альбедо. Антропогенная деятельность существенно влияет на климатические факторы, изменяя их режимы. О глобальных проблемах, вызванных деятельностью человека Вы можете познакомиться в лекции «Глобальные проблемы человечества» данного курса.

Свет - это первичный источник энергии, без которого невозможна жизнь на Земле. Он участвует в фотосинтезе, обеспечивая создание органических соединений из неорганических растительностью Земли, и в этом его важнейшая энергетическая функция. Но в фотосинтезе участвует лишь часть спектр в пределах от 380 до 760 нм, которую называют областью физиологически активной радиации (ФАР). Внутри нее для фото синтеза наибольшее значение имеют красно-оранжевые лучи (600-700 нм) и фиолетово-голубые (400-500 нм), наименьшее - желто-зеленые (500-600 нм). Последние отражаются, что и придает хлорофиллоносным растениям зеленую окраску. Однако свет не только энергетический ресурс, но и важнейший экологический фактор, весьма существенно влияющий на биоту в целом и на адаптационные процессы и явления в организмах.

За пределами видимого спектра и ФАР остаются инфракрасная (ИК) и ультрафиолетовая (УФ) области. УФ-излучение несет много энергии и обладает фотохимическим воздействием - организмы к нему очень чувствительны. ИК-излучение обладает значительно меньшей энергией, легко поглощается водой, но некоторые сухопутные организмы используют его для поднятия температуры тела выше окружающей.

Важное значение для организмов имеет интенсивность освещения. Растения по отношению к освещенности подразделяются на светолюбивые (гелиофиты), тенелюбивые (сциофиты) и теневыносливые.

Первые две группы обладают разными диапазонами толе­рантности в пределах экологического спектра освещенности. Яркий солнечный свет - оптимум гелиофитов (луговые травы, хлебные злаки, сорняки и др.), слабая освещенность - оптимум тенелюбивых (растения таежных ельников, лесостепных дубрав, тропических лесов). Первые не выносят тени, вторые - яркого солнечного света.

Теневыносливые растения имеют широкий диапазон толерантности к свету и могут развиваться как при ярком освещенности, так и в тени.

Свет имеет большое сигнальное значение и вызывает регуляторные адоптации организмов. Одним из самых надежных сигналов, регулирующих активность организмов во времени, является длина дня - фотопериод.

Фотопериодизм как явление - это реакция организма на сезонные изменения длины дня. Длина дня в данном месте, в данное время года всегда одинакова, что позволяет растению и животному определиться на данной широте со временем года, т. е. временем начала цветения, созревания и т. п. Иными словами, фотопериод - это некое «реле времени», или «пусковой механизм», включающий последовательность физиологических процессов в живом организме.

Фотопериодизм нельзя отождествлять с обычными внешними суточными ритмами, обусловленными просто сменой дня и ночи. Однако суточная цикличность жизнедеятельности у животных и человека переходит во врожденные свойства вида, т. е. становится внутренними (эндогенными) ритмами. Но в отличие от изначально внутренних ритмов их продолжительность может не совпадать с точной цифрой - 24 часа - на 15- 20 минут, и в связи с этим, такие ритмы называют циркадными (в переводе - близкие к суткам).

Эти ритмы помогают организму чувствовать время, и эту способность называют «биологическими часами». Они помогают птицам при перелетах ориентироваться по солнцу и вообще ориентируют организмы в более сложных ритмах природы.

Фотопериодизм, хотя и наследственно закреплен, проявляется лишь в сочетании с другими факторами, например, температурой: если в день Х холодно, то растение зацветает позже, или в случае с вызреванием - если холод наступает раньше дня X, то, скажем, картофель дает низкий урожай, и т. п. В субтропической и тропической зоне, где длина дня по сезонам года меняется мало, фотопериод не может служить важным экологическим фактором - на смену ему приходит чередование засушливых и дождливых сезонов, а в высокогорье главным сигнальным фактором становится температура.

Так же, как на растениях, погодные условия отражаются на пойкилотермных животных, а гомойотермные отвечают на это изменениями в своем поведении: изменяются сроки гнездования, миграции и др.

Человек научился использовать описанные выше явления. Длину светового дня можно изменять искусственно, тем самым изменяя сроки цветения в плодоношения растений (выращивание рассады еще в зимний период и даже плодов в теплицах), увеличивая яйценоскость кур, и др.

Развитие живой природы по сезонам года происходит в соответствии с биоклиматическим законом, который носит имя Хоякинса: сроки наступления различных сезонных явлений (фенодат) зависят от широты, долготы местности и ее высоты над уровнем моря. Значит, чем севернее, восточнее и выше местность, тем позже наступает весна и раньше осень. Для Европы на каждом градусе широты сроки сезонных событий наступают через три дня, в Северной Америке - в среднем через четыре дня на каждый градус широты, на пять градусов долготы и на 120 м высоты над уровнем моря.

Знание фенодат имеет большое значение для планирования различных сельхозработ в других хозяйственных мероприятий.

3.4. Абиотические факторы наземной среды

Абиотическая компонента наземной среды (суши) включает совокупность климатических и почвенно-грунтовых условии, т. е. множество динамичных во времени и пространстве элементов, связанных друг с другом и влияющих на живые организмы.

Особенности воздействия на биосферу со стороны космических факторов и проявлений солнечной активности состоят в том, что поверхность нашей планеты (где сосредоточена "пленка жизни") как бы отделена от Космоса мощным слоем вещества в газообразном состоянии, т. е. атмосферой. Абио­тическая компонента наземной среды включает совокупность климатических, гидрологических, почвенно-грунтовых усло­вий, т. е. множество динамичных во времени и пространстве элементов, связанных между собой и влияющих на живые организмы. Атмосфере как среде, воспринимающей космиче­ские и связанные с Солнцем факторы, принадлежит важнейшая климатоформирующая функция.

Влияние температуры на организмы

Температура - важнейший из ограничивающих (лимитирующих) факторов. Пределами толерантности для любого вида являются максимальная и минимальная летальные температуры, за пределами которых вид смертельно поражают жара или холод (рис. 2.). Если не принимать во внимание некоторые уникальные исключения, все живые существа способны жить при температуре между 0 и 50 °С, что обусловлено свойствами протоплазмы клеток.

На рис. 2. показаны температурные пределы жизни видовой группы, популяции. В «оптимальном интервале» организмы чувствуют себя комфортно, активно размножаются и численность популяции растет. К крайним участкам температурного предела жизни - «пониженной жизнедеятельности» - организмы чувствуют себя угнетенно. При дальнейшем похолодании в пределах «нижней границы стойкости» или увеличении жары в пределах «верхней границы стойкости», организмы попадают в «зону смерти» и погибают.

Этим примером иллюстрируется общий закон биологической стойкости (по Ламотту), применимый к любому из важных лимитирующих факторов. Величина «оптимального интервала» характеризует «величину» стойкости организмов, т. е. величину его толерантности к этому фактору, или «экологическую валентность».

Адаптационные процессы у животных по отношению к температуре привели к появлению пойкилотермных и гомойотермных животных. Подавляющее большинство животных являются пойкилотермными, т. е. температура их собственного тела меняется с изменением температуры окружающей среды: земноводные, пресмыкающиеся, насекомые и др. Значительно меньшая часть животных - гомойотермные, т. е. имеют постоянную температуру тела, независящую от температуры внешней среды: млекопитающие (в том числе и человек), имеющие температуру тела 36-37 0 С, и птицы с температурой тела 40°С.

Рис. 2. Общий закон биологической стойкости (по М. Ламотту)

Активную жизнь при температуре ниже нуля могут вести только гомойотермные животные. Пойкилотермные хотя выдерживают температуру значительно ниже нуля, но при этом теряют подвижность. Температура порядка 40 °С, т. е. даже ниже температуры свертывания белка, для большинства животных предельна.

Не меньшее значение температура играет в жизни растений. При повышении температуры на 10 °С интенсивность фотосинтеза увеличивается в два раза, но лишь до 30-35 °С, за тем его интенсивность падает, и при 40-45 °С фотосинтез вообще прекращается. При 50 °С большинство наземных растений погибают, что связано с интенсификацией дыхания растений при повышении температуры, а затем его прекращения при 50 0 С.

Температура влияет и на ход корневого питания у растений: этот процесс возможен лишь при условии, когда температура почвы на всасывающих участках на несколько градусов ниже температуры наземной части растения. Нарушение этого равновесия влечет за собой угнетение жизнедеятельности растений и даже его гибель. Известны морфологические приспособления растений низким температурам, так называемые жизненные формы растений, например, эпифиты, фанерофиты и д.п.

Морфологические адаптации к температурным условиям жизни, и прежде всего, наблюдаются также и у животных. Жизненные фермы животных одного вида, например, могут сформироваться под воздействием низких температур, от -20 до -40 0 С, при которых они вынуждены накапливать питательные вещества и увеличивать массу тела: из всех тигров самый крупный амурский тигр, живущий в наиболее северных и суровых условиях. Эта закономерность именуется правилом Бергмана: у теплокровных животных размер тела особей в среднем больше у популяций, живущих в более холодных частях ареала распространения вида.

Но в жизни животных гораздо большее значение имеют физиологические адаптации, простейшей из которых является акклиматизация - физиологическое приспособление к пе­ренесению жары или холода. Например, борьба с перегревом путем увеличения испарения, борьба с охлаждением у пойкилотермных животных путем частичного обезвоживания своего тела или накопления специальных веществ, понижающих точку замерзания, у гомойотермных - за счет изменения обмена веществ.

Существуют и более радикальные формы защиты от холода - миграция в более теплые края (перелеты птиц; высокогорные серны на зиму переходят на более низкие высоты, и др.), зимовка - впадение в спячку на зимний период (сурок, белка, бурый медведь, летучие мыши: они способны понижать температуру своего тела почти до нуля, замедляя метаболизм и, тем самым, трату питательных веществ).

экологический среда организм популяция численность

Условия жизни (условия существования) - это совокупность необходимых для организма элементов, с которыми он находится в неразрывной связи и без которых существовать не может.

Приспособления организма к среде носят название адаптации. Способность к адаптациям - одно их основных свойств жизни вообще, обеспечивающее возможность ее существования, выживания и размножения. Адаптация проявляется на разных уровнях - от биохимии клеток и поведения отдельных организмов до строения и функционирования сообществ и экосистем. Адаптации возникают и изменяются в ходе эволюции вида.

Отдельные свойства или элементы среды, воздействующие на организмы, называются экологическими факторами. Факторы среды разнообразны. Они имеют разную природу и специфику действия. Экологические факторы подразделяются на две большие группы: абиотические и биотические.

Абиотические факторы - это комплекс условий неорганической среды, влияющих на живые организмы прямо или косвенно: температура, свет, радиоактивное излучение, давление, влажность воздуха, солевой состав воды и т.д.

Биотические факторы - это все формы воздействия живых организмов друг на друга. Каждый организм постоянно испытывает на себе прямое или косвенное влияние других, вступая в связь с представителями своего и других видов.

В отдельных случаях антропогенные факторы выделяют в самостоятельную группу наряду с биотическими и абиотическими факторами, подчеркивая чрезвычайное действие антропогенного фактора.

Антропогенные факторы - это все формы деятельности человеческого общества, которые приводят к изменению природы как среды обитания других видов или непосредственно сказываются на их жизни. Значение антропогенного воздействия на весь живой мир Земли продолжает стремительно возрастать.

Изменения факторов среды во времени могут быть:

  • 1) регулярно-постоянными, меняющими силу воздействия в связи со временем суток, сезоном года или ритмом приливов и отливов в океане;
  • 2) нерегулярными, без четкой периодичности, например, изменение погодных условий в разные годы, бури, ливни, сели и т.д.;
  • 3) направленными на протяжении определенных или длительных отрезков времени, например, похолодание или потепление климата, зарастание водоема и т.д.

Экологические факторы среды могут оказывать на живые организмы различные воздействия:

  • 1) как раздражители, вызывая приспособительные изменения физиологических и биохимических функций;
  • 2) как ограничители, обуславливающие невозможность существования в данных условиях;
  • 3) как модификаторы, вызывающие анатомические и морфологические изменения организмов;
  • 4) как сигналы, свидетельствующие об изменении других факторов.=

Несмотря на большое разнообразие экологических факторов, в характере их взаимодействия с организмами и в ответных реакциях живых существ можно выделить ряд общих закономерностей.

Интенсивность экологического фактора, наиболее благоприятная для жизнедеятельности организма, - оптимум, а дающая наихудший эффект - пессимум, т.е. условия, при которых жизнедеятельность организма максимально угнетается, но он еще может существовать. Так, при выращивании растений в различных температурных режимах точка, при которой наблюдается максимальный рост, и будет оптимумом. В большинстве случаев это некий диапазон температур, составляющий несколько градусов, потому здесь лучше говорить о зоне оптимума. Весь интервал температур (от минимальной до максимальной), при которых еще возможен рост, называют диапазоном устойчивости (выносливости), или толерантности. Точка, ограничивающая его (т.е. минимальная и максимальная) пригодные для жизни температуры - это предел устойчивости. Между зоной оптимума и пределом устойчивости по мере приближения к последнему растение испытывает все нарастающий стресс, т.е. речь идет о стрессовых зонах, или зонах угнетения, в рамках диапазона устойчивости

По мере удаления вверх и вниз но шкале не только усиливается стресс, а в конечном итоге, по достижении пределов устойчивости организма, происходит его гибель. Подобные эксперименты можно проводить и для проверки влияния других факторов. Результаты графически будут соответствовать кривой подобного типа.

Наземно-воздушная среда жизни, ее характеристика и формы адаптации к ней

Жизнь на суше потребовала таких приспособлений, которые оказались возможными только у высокоорганизованных живых организмов. Наземно-воздушная среда более сложная для жизни, она отличается высоким содержанием кислорода, малым количеством водяных паров, низкой плотностью и т.д. Это сильно изменило условия дыхания, водообмена и передвижения живых существ.

Низкая плотность воздуха определяет его малую подъемную силу и незначительную опорность. Организмы воздушной среды должны иметь собственную опорную систему, поддерживающую тело: растения - разнообразные механические ткани, животные - твердый или гидростатический скелет. Кроме этого, все обитатели воздушной среды тесно связаны с поверхностью земли, которая служит им для прикрепления и опоры.

Малая плотность воздуха обеспечивает низкую сопротивляемость передвижения. Поэтому многие наземные животные приобрели способность к полету. К активному полету приспособилось 75% всех наземных, преимущественно насекомые и птицы.

Благодаря подвижности воздуха, существующим в нижних слоях атмосферы вертикальным и горизонтальным потокам воздушных масс возможен пассивный полет организмов. В связи с этим у многих видов развита анемохория - расселение с помощью воздушных потоков. Анемохория характерна для спор, семян и плодов растений, цист простейших, мелких насекомых, пауков и т.д. Пассивно переносимые потоками воздуха организмы получили в совокупности название аэропланктона.

Наземные организмы существуют в условиях сравнительно низкого давления, обусловленного малой плотностью воздуха. В норме оно равно 760 мм ртутного столба. С увеличением высоты над уровнем моря давление уменьшается. Низкое давление может ограничивать распространенность видов в горах. Для позвоночных животных верхняя граница жизни - около 60 мм. Снижение давления влечет за собой уменьшение обеспеченности кислородом и обезвоживание животных за счет увеличения частоты дыхания. Примерно такие же пределы продвижения в горах имеют высшие растения. Несколько более выносливы членистоногие, которые могут встречаться на ледниках, выше границы растительности.

Газовый состав воздуха. Кроме физических свойств воздушной среды, для существования наземных организмов очень важны ее химические свойства. Газовый состав воздуха в приземном слое атмосферы довольно однороден в отношении содержания главных компонентов (азот - 78,1%, кислород - 21,0%, аргон - 0,9%, углекислый газ - 0,003% от объема).

Высокое содержание кислорода способствовало повышению обмена веществ у наземных организмов по сравнению с первичноводными. Именно в наземной обстановке, на базе высокой эффективности окислительных процессов в организме, возникла гомойтермия животных. Кислород из-за постоянного его высокого содержания в воздухе не является лимитирующим фактором жизни в наземной среде.

Содержание углекислого газа может изменяться в отдельных участках приземного слоя воздуха в довольно значительных пределах. Повышенное насыщение воздуха СО? возникает в зонах вулканической активности, возле термальных источников и других подземных выходов этого газа. В высоких концентрациях углекислый газ токсичен. В природе такие концентрации встречаются редко. Низкое содержание С02 тормозит процесс фотосинтеза. В условиях закрытого грунта можно повысить скорость фотосинтеза, увеличив концентрацию углекислого газа. Этим пользуются в практике тепличного и оранжерейного хозяйства.

Азот воздуха для большинства обитателей наземной среды является инертным газом, но отдельные микроорганизмы (клубеньковые бактерии, азотбактерии, сине-зеленые водоросли и др.) обладают способностью связывать его и вовлекать в биологический круговорот веществ.

Дефицит влаги - одна из существенных особенностей наземно-воздушной среды жизни. Вся эволюция наземных организмов шла под знаком приспособления к добыванию и сохранению влаги. Режимы влажности среды на суше очень разнообразны - от полного и постоянного насыщения воздуха водяными парами в некоторых районах тропиков до практически полного их отсутствия в сухом воздухе пустынь. Также значительна суточная и сезонная изменчивость содержания водяных паров в атмосфере. Водообеспеченность наземных организмов зависит также от режима выпадения осадков, наличия водоемов, запасов почвенной влаги, близости фунтовых вод и т.д.

Это привело к развитию у наземных организмов адаптации к различным режимам водообеспечения.

Температурный режим. Следующей отличительной чертой воздушно-наземной среды являются значительные температурные колебания. В большинстве районов суши суточные и годовые амплитуды температур составляют десятки градусов. Устойчивость к температурным изменениям среды у наземных обитателей очень различна, в зависимости от того, в каком конкретном местообитания проходит их жизнь. Однако в целом наземные организмы значительно более эвритермны по сравнению с водными организмами.

Условия жизни в наземно-воздушной среде осложняются, кроме того, существованием погодных изменений. Погода - непрерывно меняющиеся состояния атмосферы у заемной поверхности, до высоты примерно в 20 км (граница тропосферы). Изменчивость погоды проявляется в постоянном варьировании сочетания таких факторов среды, как температура, влажность воздуха, облачность, осадки, сила и направление ветра и т.д. Многолетний режим погоды характеризует климат местности. В понятие «Климат» входят не только средние значения метеорологических явлений, но также их годовой и суточный ход, отклонение от него и их повторяемость. Климат определяется географическими условиями района. Основные климатические факторы - температура и влажность - измеряются количеством осадков и насыщенностью воздуха водяными парами.

Для большинства наземных организмов, особенно мелких, не столько важен климат района, сколько условия их непосредственного обитания. Очень часто местные элементы среды (рельеф, экспозиция, растительность и т.д.) так изменяют в конкретном участке режим температур, влажности, света, движения воздуха, что он значительно отличается от климатических условий местности. Такие модификации климата, складывающиеся в приземном слое воздуха, называются микроклиматом. В каждой зоне микроклимат очень разнообразен. Можно выделить микроклиматы очень небольших участков.

Световой режим наземно-воздушной среды также обладает некоторыми особенностями. Интенсивность и количество света здесь наиболее велики и практически не лимитируют жизнь зеленых растений, как в воде или почве. На суше возможно существование чрезвычайно светолюбивых видов. Для подавляющего большинства наземных животных с дневной и даже ночной активностью зрение представляет собой один из основных способов ориентации. У наземных животных зрение имеет важное значение для поисков добычи, многие виды обладают даже цветным зрением. В связи с этим у жертв возникают такие приспособительные особенности, как защитная реакция, маскирующая и предупреждающая окраска, мимикрия и т.д. У водных обитателей такие адаптации развиты значительно меньше. Возникновение ярко окрашенных цветков высших растений также связано с особенностями аппарата опылителей и в конечном счете - со световым режимом среды.

Рельеф местности и свойства грунта - также условия жизни наземных организмов и, в первую очередь, растений. Свойства земной поверхности, оказывающие экологическое воздействие на ее обитателей, объединяются «эдафическими факторами среды» (от греческого «эдафос» - «почва»).

По отношению к разным свойствам почв можно выделить целый ряд экологических групп растений. Так, по реакции на кислотность почвы различают:

  • 1) ацидофильные виды - растут на кислых почвах с рН не менее 6,7 (растения сфагновых болот);
  • 2) нейтрофильные - склонны расти на почвах с рН 6,7-7,0 (большинство культурных растений);
  • 3) базифильные - растут при рН более 7,0 (мордовник, лесная ветренница);
  • 4) индиферентные - могут произрастать на почвах с разным значением рН (ландыш).

Отличаются растения и по отношению к влажности почвы. Определенные виды приурочены к разным субстратам, например, петрофиты растут на каменистых почвах, пасмофиты заселяют сыпучие пески.

Рельеф местности и характер грунта влияют на специфику передвижения животных: например, копытных, страусов, дроф, живущих на открытых пространствах, твердом грунте, для усиления отталкивания при беге. У ящериц, обитающих в сыпучих песках, пальцы окаймлены бахромой из роговых чешуек, увеличивающих опоры. Для наземных обитателей, роющих норы, плотный грунт неблагоприятен. Характер почвы в определенных случаях влияет на распределение наземных животных, роющих норы или зарывающихся в грунт, или откладывающих яйца в почву и т.д.

Это прямо или косвенно действующие на организм факторы неживой природы - свет, температура, влажность, химический состав воздушной, водной и почвенной среды и др. (т. е. свойства среды, возникновение и воздействие которых прямо не зависит от деятельности живых организмов).

Свет

(cолнечная радиация) - экологический фактор, характеризующийся нитенсивностью и качеством лучистой энергии Солнца, которая используется фотосинтезирующими зелеными растениями для создания растительной биомассы. Солнечный свет, достигающий поверхности Земли, - основной источник энергии для поддержания теплового баланса планеты, водного обмена организмов, создания и превращения органического вещества автотрофным звеном биосферы, что в конечном итоге делает возможным формирование среды, способной удовлетворять жизненные потребности организмов.

Биологическое действие солнечного света обусловливается его спектральным составом [показать] ,

В спектральном составе солнечного света различают

  • инфракрасные лучи (длина волны более 0,75 мкм)
  • видимые лучи (0,40-0,75 мкм) и
  • ультрафиолетовые лучи (менее 0,40 мкм)

Разные участки солнечного спектра неравнозначны по биологическому действию.

Инфракрасные , или тепловые, лучи несут основное количество тепловой энергии. На их долю приходится около 49 % лучистой энергии, которая воспринимается живыми организмами. Тепловая радиация хорошо поглощается водой, количество которой в организмах довольно велико. Это приводит к нагреванию всего организма, что имеет особенное значение для холоднокровных животных (насекомых, рептилий и др.). У растений важнейшая функция инфракрасных лучей состоит в осуществлении транспирации, с помощью которой из листьев водяными парами отводится излишек тепла, а также в создании оптимальных условий для вхождения углекислого газа через устьица.

Видимый участок спектра составляют около 50 % лучистой энергии, поступающей на Землю. Данная энергия необходима растениям для фотосинтеза. Однако на это используется лишь 1 % ее, остальная же часть отражается или рассеивается в виде тепла. Этот участок спектра oбусловил появление у растительных и животных организмов многих важных приспособлений. У зеленых растений, кроме формирования светопоглотительного пигментного комплекса, с помощью которого осуществляется процесс фотосинтеза, возникла яркая окраска цветов, что способствует привлечению опылителей.

Для животных свет в основном играет информационную роль и участвует в регуляции многих физиолого-биохимческих процессов. Уже у простейших имеются светочувствительные органоиды (светочувствительный глазок у эвглены зеленой), а реакция на свет выражается в виде фототаксисов - перемещение в сторону наибольшей или наименьшей освещенности. Начиная с кишечнополостных, практически у всех животных развиваются различные по строению светочувствительные органы. Различают ночных и сумеречных животных (совы, летучие мыши и др.), а также животных, обитающих в постоянной темноте (медведка, аскарида, крот и др.).

Ультрафиолетовая часть характеризуется самой высокой энергией квантов и высокой фотохимической активностью. С помощью ультрафиолетовых лучей с длиной волны 0,29-0,40 мкм в организме животных осуществляется биосинтез витамина D, пигментов сетчатки глаза, кожи. Эти лучи лучше всего воспринимают органы зрения многих насекомых, у растений они оказывают формообразовательный эффект и способствуют синтезу некоторых биологически активных соединений (витаминов, пигментов). Лучи с длиной волны менее 0,29 мкм губительно действуют на живое.

Интенсивностью [показать] ,

У растений, жизнедеятельность которых всецело зависит от света, возникают различные морфоструктурные и функциональные адаптации к световому режиму местообитаний. По требовательности к условиям освещения растения распределены на следующие экологические группы:

  1. Светолюбивые (гелиофиты) растения открытых местообитаний, успешно произрастающие только в условиях полного солнечного освещения. Для них характерна высокая интенсивность фотосинтеза. Это ранневесенние растения степей и полупустынь (гусиный лук, тюльпаны), растения безлесных склонов (шалфей, мята, чабрец), хлебные злаки, подорожник, кувшинка, акация и др.
  2. Теневыносливые растения характеризуются широкой экологической амплитудой к световому фактору. Лучше всего растут в условиях высокой освещенности, однако способны адаптироваться к условиям разного уровня затенения. Это древесные (береза, дуб, сосна) и травянистые (земляника лесная, фиалка, зверобой и др.) растения.
  3. Тенелюбивые растения (сциофиты) не выносят сильного освещения, произрастают только в затененных местах (под пологом леса), а на открытых никогда не растут. На вырубках при сильном освещении у них происходит замедление роста, а иногда - гибель. К таким растениям относятся лесные травы - папоротники, мхи, кислица и др. Адаптация к затенению обычно сочетается с потребностью хорошего водоснабжения.

Суточной и сезонной периодичностью [показать] .

Суточная периодичность определяет процессы роста и развития растений и животных, которые зависят от длины светового дня.

Фактор, который регулирует и управляет ритмикой суточной жизнедеятельности организмов, называется фотопериодизмом. Он является важнейшим сигнальным фактором позволяющим растениям и животным "измерять время" - соотношение между продолжительностью периода освещенности и темноты в течение суток, определять количественые параметры освещенности. Иными словами, фотопериодизм - это реакция организмов на смену дня и ночи, которая проявляется в колебании интенсивности физиологических процессов - роста и развития. Именно продолжительность дня и ночи очень точно и закономерно изменяется в течение года независимо от случайных факторов, неизменно повторяясь из года в год, поэтому организмы в процессе эволюции согласовали все этапы своего развития с ритмом этих временных интервалов.

В умеренном поясе свойство фотопериодизма служит функциональным климатическим фактором, определяющим жизненный цикл большинства видов. У растений фотопериодический эффект проявляется в согласовании периода цветения и созревания плодов с периодом наиболее активного фотосинтеза, у животных - в совпадении времени размножения с периодом обилия пищи, у насекомых - в наступлении диапаузы и выходе из нее.

К биологическим явлениям, вызываемым фотопериодизмом, относятся также сезонные миграции (перелеты) птиц, проявление их гнездовых инстинктов и размножения, смена меховых покровов у млекопитающих и т. п.

По необходимой длительности светового периода растения разделяют на

  • длиннодневные, которым для нормального роста и развития необходимо больше 12 ч светового времени (лен, лук, морковь, овес, белена, дурман, молодило, картофель, белладонна и др.);
  • растения короткого дня - им нужно для зацветания не менее 12 ч беспрерывного темнового периода (георгины, капуста, хризантемы, амарант, табак, кукуруза, томаты и др.);
  • нейтральные растения, у которых развитие генеративных органов происходит как при длинном, так и при коротком дне (бархатцы, виноград, флоксы, сирень, гречиха, горох, спорыш и др.)

Растения длинного дня происходят преимущественно из северных широт, короткого - из южных. В тропическом поясе, где продолжительность дня и ночи мало изменяются на протяжении года, фотопериод не может служить ориентирующим фактором периодичности биологических процессов. Его заменяет чередование сухого и влажного сезонов. Длиннодневные виды успевают дать урожай даже в условиях короткого северного лета. Образование большой массы органических веществ происходит летом в течение довольно длинного светового дня, который на широте Москвы может достигать 17 ч, а на широте Архангельска - более 20 ч в сутки.

Продолжительность дня существенно сказывается и на поведении животных. С наступлением весенних дней, длительность которых прогрессивно увеличивается, у птиц появляются гнездовые инстинкты, они возвращаются из теплых краев (хотя температура воздуха еще может быть и неблагоприятной), приступают к кладке яиц; теплокровные животные линяют.

Сокращение длительности дня осенью вызывает противоположные сезонные явления: отлет птиц, некоторые животные впадают в спячку, у других отрастает плотный шерстный покров, образуются зимующие стадии у насекомых (несмотря на еще благоприятную температуру и обилие корма). В этом случае уменьшение длительности дня сигнализирует живым организмам о близком наступлении зимнего периода, и они могут заранее подготовиться к нему.

У животных, особенно у членистоногих, рост и развитие также зависят от длины светового дня. Например, капустная белянка, березовая пяденица нормально развиваются лишь при длинном световом дне, тогда как тутовый шелкопряд, различные виды саранчи, совок - при коротком. Фотопериодизм влияет и на время наступления и прекращения брачного периода у птиц, млекопитающих и других животных; на размножение, эмбриональное развитие земноводных, пресмыкающихся, птиц и млекопитающих;

Сезонные и суточные изменения освещенности являются самыми точными часами, ход которых четко закономерен и практически не изменился в течение последнего периода эволюции.

Благодаря этому появилась возможность искусственного регулирования развития животных и растений. Например, создание растениям в теплицах, оранжереях или парниках светового дня длительностью 12-15 ч позволяет даже зимой выращивать овощные культуры, декоративные растения, ускорять рост и развитие рассады. Наоборот, затенение растений летом ускоряет появление цветков или семян позднецветущих осенних растений.

Продолжением дня за счет искусственного освещения зимой можно увеличить период яйценосности кур, гусей, уток, регулировать размножение пушных зверей на зверофермах. Огромную роль играет световой фактор и в других жизненных процессах животных. Прежде всего он является необходимым условием видения, их зрительной ориентации в пространстве в результате восприятия органами зрения прямых, рассеянных или отраженных от окружающих предметов световых лучей. Велика информативность для большинства животных поляризованного света, способности различать цвета, ориентироваться по астрономическим источникам света в осенних и весенних миграциях птиц, в навигационных способностях других животных.

На основе фотопериодизма у растений и животных в процессе эволюции выработались специфические годичные циклы периодов роста, размножения, подготовки к зиме, которые получили название годичных или сезонных ритмов. Эти ритмы проявляются в изменении интенсивности характера биологических процессов и повторяются с годичной периодичностью. Совпадение периодов жизненного цикла с соответствующим временем года имеет огромное значение для существования вида. Сезонные ритмы обеспечивают растениям и животным наиболее благоприятные условия для роста и развития.

Более того, физиологические процессы растений и животных находятся в строгой зависимости от суточной ритмичности, что выражается определенными биологическими ритмами. Следовательно, биологические ритмы - это периодически повторяющиеся изменения интенсивности и характера биологических процессов и явлений. У растений биологические ритмы проявляются в суточном движении листьев, лепестков, изменении фотосинтеза, у животных - в колебании температуры, изменении секреции гормонов, скорости деления клеток и т. д. У человека также наблюдаются суточные колебания частоты дыхания, пульса, артериального давления, бодрствования и сна и др. Биологические ритмы являются наследственно закрепленными реакциями, поэтому познание их механизмов имеет важное значение при организации труда и отдыха человека.

Температура

Один из важнейших абиотических факторов, от которого в значительной степени зависит существование, развитие и распространение организмов на Земле [показать] .

Верхним температурным пределом жизни на Земле, вероятно, является 50-60°С. При таких температурах происходит потеря активности ферментов и свертывание белка. Однако общий температурный диапазон активной жизни на планете значительно шире и ограничивается следующими пределами (табл. 1)

Таблица 1. Температурный диапазон активной жизни на планете, °С

Среди организмов, способных существовать при очень высоких температурах, известны термофильные водоросли, которые могут жить в горячих источниках при 70-80°С. Успешно переносят очень высокие температуры (65-80°С) накипные лишайники, семена и вегетативные органы пустынных растений (саксаул, верблюжья колючка, тюльпаны), находящиеся в верхнем слое раскаленной почвы.

Существует немало видов животных и растений, выдерживающих большие значения минусовых температур. Деревья и кустарники в Якутии не вымерзают при минус 68°С. В Антарктиде при минус 70°С живут пингвины, а в Арктике - белые медведи, песцы, полярные совы. Полярные воды с температурой от 0 до -2°С населены разнообразными представителями растительного и животного мира - микроводорослями, беспозвоночными, рыбами, жизненный цикл которых постоянно происходит в таких температурных условиях.

Значение температуры состоит прежде всего в непосредственном ее влиянии на скорость и характер протекания реакций обмена веществ в организмах. Поскольку суточные и сезонные колебания температур возрастают по мере удаления от экватора, растения и животные, приспосабливаясь к ним, проявляют различную потребность в тепле.

Способы приспособления

  • Миграция - переселение в более благоприятные условия. Регулярно в течение года мигрируют киты, многие виды птиц, рыб, насекомых и других животных.
  • Оцепенение - состояние полной неподвижности, резкое снижение жизнедеятельности, прекращение питания. Наблюдается у насекомых, рыб, земноводных, млекопитающих при понижении температуры среды осенью, зимой (зимняя спячка) или при повышении ее летом в пустынях (летняя спячка).
  • Анабиоз - состояние резкого угнетения жизненных процессов, когда видимые проявления жизни временно прекращаются. Это явление обратимое. Отмечается у микробов, растений, низших животных. Семена некоторых растений в анабиозе могут находиться до 50 лет. Микробы в состоянии анабиоза образуют споры, простейшие - цисты.

Многие растения и животные при соответствующей подготовке успешно переносят в состоянии глубокого покоя или анабиоза предельно низкие температуры. В лабораторных экспериментах семена, пыльца, споры растений, нематоды, коловратки, цисты простейших и других организмов, сперматозоиды после обезвоживания или помещения в растворы специальных защитных веществ - криопротекторов - переносят температуры, близкие к абсолютному нулю.

В настоящее время достигнуты успехи по практическому использованию веществ с криопротекторными свойствами (глицерин, полиэтиленоксид, диметилсульфоксид, сахароза, маннит и др.) в биологии, сельском хозяйстве, медицине. В растворах криопротекторов осуществляется длительное хранение консервированной крови, спермы для искусственного осеменения сельскохозяйственных животных, некоторых органов и тканей для трансплантации; защита растений от зимних морозов, ранневесенних заморозков и т. п. Оказанные проблемы относятся к компетенции криобиологии и криомедицины и решаются многими научными учреждениями.

  • Терморегуляция. У растений и животных в процессе эволюции выработались различные механизмы терморегуляции:
  1. у растений
    • физиологический - накопление в клетках сахара, за счет которого повышается концентрация клеточного сока и снижается обводненность клеток, что способствует морозоустойчивости растений. Например, у карликовой березы, можжевельника верхние ветви при чрезмерно низкой температуре омертвевают, а стелющиеся перезимовывают под снегом и не погибают.
    • физический
      1. устьичная транспирация - отведения избытка тепла и предотвращение ожогов путем выведения воды (испарения) из тела растения
      2. морфологический - направленный на предотвращение перегрева: густая опушенность листьев для рассеивания солнечных лучей, глянцевитая поверхность для их отражения, уменьшение поглощающей лучи поверхности - свертывание листовой пластинки в трубочку (ковыль, овсяница), расположение листа ребром к солнечным лучам (эвкалипт), редуцирование листвы (саксаул, кактус); направленный на предотвращение замерзания: особые формы роста - карликовость, образование стелющихся форм (зимовка под снегом), темная окраска (помогает лучше поглощать тепловые лучи и нагреваться под снегом)
  2. у животных
    • холоднокровных (пойкилотермных, эктотермных) [беспозвоночные, рыбы, земноводные и пресмыкающиеся] - регуляция температуры тела осуществляется пассивно за счет усиления мышечной работы, особенностей структуры и цвета покровов, отыскивания мест, где возможно интенсивное поглощение солнечных лучей, и т.д., т.к. они не могут поддерживать температурный режим обменных процессов и их активность зависит главным образом, от тепла, поступающего извне, а температура тела - от значений температуры окружающей среды и энергетического баланса (соотношения поглощения и отдачи лучистой энергии).
    • теплокровных (гомойотермных, эндотермных) [птицы и млекопитающие] - способны поддерживать постоянную температуру тела независимо от температуры среды. Это свойство дает возмоность многим видами животных жить и размножаться при температуре ниже нуля (северный олень, белый медведь, ластоногие, пингвины). В процессе эволюции у них выработались два механизма терморегуляции, с помощью которых они поддерживают постоянную температуру тела: химический и физический [показать] .
      • Химический механизм терморегуляции обеспечивается скоростью и интенсивностью окислительно-восстановительных реакций и контролируется рефлекторно центральной нервной системой. Важную роль в повышении эффективности химического механизма терморегуляции сыграли такие ароморфозы, как появление четырехкамерного сердца, совершенствование органов дыхания у птиц и млекопитающих.
      • Физический механизм терморегуляции обеспечивается появлением теплоизолирующих покровов (перья, мех, подкожно-жировая клетчатка), потовых желез, органов дыхания, а также развитием нервных механизмов регуляции кровообращения.

      Частным случаем гомойотермии является гетеротермия - разный уровень температуры тела в зависимости от функциональной активности организма. Гетеротермия свойственна животным, впадающим в неблагоприятный период года в спячку или временное оцепенение. При этом высокая температура их тела заметно снижается за счет замедленного обмена веществ (суслики, ежи, летучие мыши, птенцы стрижей и др.).

Пределы выносливости больших значений температурного фактора различны как у пойкилотермных, так и у гомойотермных организмов.

Эвритермные виды способны переносить колебания температуры в широких пределах.

Стенотермные организмы живут в условиях узких пределов температуры, подразделяясь на теплолюбивые стенотермные виды (орхидеи, чайный куст, кофе, кораллы, медузы и др.) и на холодолюбивые (кедровый стланик, предледниковая и тундровая растительность, рыбы полярных бассейнов, животные абиссали - области наибольших океанических глубин и т. п.).

Для каждого организма или группы особей существует, оптимальная зона температуры, в пределах которой деятельность выражена особенно хорошо. Выше этой зоны находится зона временного теплового оцепенения, еще выше - зона продолжительной бездеятельности или летней спячки, граничащая с зоной высокой летальной температуры. При понижении последней ниже оптимума находится зона холодового оцепенения, зимней спячки и летальной низкой температуры.

Распределение особей в популяции в зависимости от изменения температурного фактора по территории подчиняется в целом такой же закономерности. Зоне оптимальных температур соответствует наибольшая плотность популяции, а по обе стороны от нее наблюдается снижение плотности вплоть до границы ареала, где она наименьшая.

Температурный фактор на большой территории Земли подвержен резко выраженным суточным и сезонным колебаниям, что в свою очередь обусловливает соответствующий ритм биологических явлений в природе. В зависимости от обеспеченности тепловой энергией симметричных участков обоих полушарий земного шара, начиная от экватора, различают следующие климатические зоны:

  1. Тропическая зона . Минимальная среднегодовая температура превышает 16° C, в самые прохладные дни не опускается ниже 0° C. Колебания температуры во времени незначительны, амплитуда не превышает 5° C. Вегетация круглогодичная.
  2. Субтропическая зона . Средняя температура самого холодного месяца не ниже 4° C, а самого теплого - выше 20° C. Минусовые температуры редки. Устойчивый снежный покров зимой отсутствует. Вегетационный период продолжается 9-11 мес.
  3. Умеренная зона . Хорошо выражены летний вегетационный сезон и зимний период покоя растений. В основной части зоны устойчивый снежный покров. Весной и осенью типичны заморозки. Иногда эта зона подразделяется на две: умеренно теплую и умеренно холодную, для которых характерно четыре времени года.
  4. Холодная зона . Среднегодовая темлература ниже О° C, заморозки возможны даже в течение короткого (2-3 мес) вегетационного периода. Очень велико годовое колебание температуры.

Закономерность вертикального размещения растительности, почв, животного мира в горных районах обусловлена главным образом также температурным фактором. В горах Кавказа, Индии, Африки можно выделить четыре-пять растительных поясов, последовательность которых снизу вверх отвечает последовательности широтных зон от экватора к полюсу на одной и той же высоте.

Влажность

Экологический фактор, характеризующийся содержанием воды в воздухе, почве, живых организмах. В природе существует суточный ритм влажности: она повышается ночью и понижается днем. Вместе с температурой и светом влажность играет важную роль в регуляции активности живых организмов. Источником воды для растений и животных служат главным образом атмосферные осадки и подземные воды, а также роса и туман.

Влага - необходимое условие существования всех живых организмов на Земле. В водной среде зародилась жизнь. Обитатели суши и поныне зависимы от воды. Для многих видов животных и растений вода продолжает оставаться средой обитания. Значение воды в процессах жизнедеятельности определяется тем, что она является основной средой в клетке, где осуществляются процессы метаболизма, выступает важнейшим исходным, промежуточным и конечным продуктом биохимических превращений. Значимость воды определяется и ее количественным содержанием. Живые организмы состоят не менее чем на 3/4 из воды.

По отношению к воде высшие растения делятся на

  • гидрофиты - водные растения (кувшинка, стрелолист, ряска);
  • гигрофиты - обитатели избыточно увлажненных мест (аир, вахта);
  • мезофиты - растения нормальных условий влажности (ландыш, валериана, люпин);
  • ксерофиты - растения, живущие в условиях постоянного или сезонного дефицита влаги (саксаул, верблюжья колючка, эфедра) и их разновидности суккуленты (кактусы, молочаи).

Приспособления к обитанию в обезвоженной среде и среде с периодическим недостатком влаги

Важной особенностью основных климатических факторов (света, температуры, влажности) является их закономерная изменчивость в течение годичного цикла и даже суток, а также в зависимости от географической зональности. В связи с этим приспособления живых организмов также имеют закономерный и сезонный характер. Приспособление организмов к условиям среды может быть быстрым и обратимым или довольно медленным, что зависит от глубины воздействия фактора.

В результате жизнедеятельности организмы способны изменять абиотические условия жизни. Например, растения низшего яруса оказываются в условиях меньшей освещенности; процессы распада органических веществ, которые происходят в водоемах, часто вызывают дефицит кислорода для других организмов. За счет деятельности водных организмов изменяется температурный и водный режимы, количество кислорода, углекислого газа, рН среды, спектральный состав света и др.

Воздушная среда и ее газовый состав

Освоение воздушной среды организмами началось после выхода их на сушу. Жизнь в воздушной среде потребовала специфических приспособлений и высокого уровня организации растений и животных. Низкая плотность и оводненность, высокое содержание кислорода, легкость перемещения воздушных масс, резкие перепады температуры и т. п. заметно сказались на процессе дыхания, водообмене и передвижении живых существ.

Подавляющее большинство наземных животных в ходе эволюции приобрели способность к полету (75 % всех видов наземных животных). Для многих видов характерна ансмохория - расселение с помощью воздушных потоков (споры, семена, плоды, цисты простейших, насекомые, пауки и т. п.). Некоторые растения стали ветроопыляемыми.

Для успешного существования организмов важны не только физические, но и химические свойства воздуха, содержание в нем нужных для жизни газовых компонентов.

Кислород. Для абсолютного большинства живых организмов кислород жизненно необходим. В бескислородной среде могут развиваться только анаэробные бактерии. Кислород обеспечивает осуществление экзотермических реакций, в ходе которых освобождается необходимая для жизнедеятельности организмов энергия. Он является конечным акцептором электрона, который отщепляется от атома водорода в процессе энергетического обмена.

В химически связанном состоянии кислород входит в состав многих очень важных органических и минеральных соединений живых организмов. Огромна его роль как окислителя в круговороте отдельных элементов биосферы.

Единственными продуцентами свободного кислорода на Земле являются зеленые растения, которые образуют его в процессе фотосинтеза. Определенное количество кислорода образуется в результате фотолиза паров воды ультрафиолетовыми лучами за пределами озонового слоя. Поглощение организмами кислорода из внешней среды происходит всей поверхностью тела (простейшие, черви) или специальными органами дыхания: трахеями (насекомые), жабрами (рыбы), легкими (позвоночные).

Кислород химически связывается и переносится по всему организму специальными пигментами крови: гемоглобином (позвоночные), гемоциапином (моллюски, ракообразные). У организмов, пребывающих в условиях постоянного недостатка кислорода, выработались соответствующие приспособления: повышенная кислородная емкость крови, более частые и глубокие дыхательные движения, большой объем легких (у жителей высокогорья, птиц) или уменьшение использования кислорода тканями благодаря повышению количества миоглобина - аккумулятора кислорода в тканях (у обитателей водной среды).

Вследствие высокой растворимости СО 2 и О 2 в воде относительное их содержание здесь выше (в 2-3 раза), чем в воздушной среде (рис. 1). Это обстоятельство очень важно для гидробионюв, использующих либо растворенный кислород для дыхания, либо СО 2 для фотосинтеза (водные фототрофы).

Углекислый газ. Нормальное количество этого газа в воздухе невелико - 0,03 % (по объему) или 0,57 мг/л. Вследствие этого даже небольшие колебания в содержании СО 2 существенно отражаются па непосредственно зависящем от него процессе фотосинтеза. Главные источники поступления СО 2 в атмосферу - дыхание животных и растений, процессы горения, извержения вулканов, деятельность почвенных микроорганизмов и грибов, промышленные предприятия и транспорт.

Обладая свойством поглощения в инфракрасной области спектра, углекислый газ влияет на оптические параметры и температурный режим атмосферы, обусловливая известный "парниковый эффект".

Важным экологическим аспектом является повышение растворимости кислорода и углекислого газа в воде по мере уменьшения ее температуры. Именно поэтому фауна водных бассейнов полярных и приполярных широт очень обильна и разнообразна, главным образом за счет повышенной концентрации в холодной воде кислорода. Растворение кислорода в воде, как и любого другого газа, подчиняется закону Генри: оно обратно пропорционально температуре и прекращается при достижении точки кипения. В теплых водах тропических бассейнов пониженная концентрация растворенного кислорода ограничивает дыхание, а следовательно, и жизнедеятельность и численность водных животных.

В последнее время наблюдается заметное ухудшение кислородного режима многих водоемов, вызванное увеличением количества органических загрязнителей, деструкция которых требует большого количества кислорода.

Зональность распространения живых организмов

Географическая (широтная) зональность

В широтном направлении с севера на юг на территории РФ последовательно располагаются такие природные зоны: тундра, тайга, лиственный лес, степь, пустыня. Среди элементов климата, которые определяют зональность размещения и распространения организмов, ведущую роль играют абиотические факторы - температура, влажность, световой режим.

Наиболее заметно зональные изменения проявляются в характере растительности - ведущем компоненте биоценоза. Это в свою очередь сопровождается изменениями состава животных - потребителей и деструкторов органических остатков звеньев цепей питания.

Тундра - холодная, безлесная равнина северного полушария. Климатические условия ее мало пригодны для вегетации растений и разложения органических остатков (вечная мерзлота, относительно низкая температура даже летом, короткий период плюсовых температур). Тут сформировались своеобразные малочисленные по видовому составу (мхи, лишайники) биоценозы. Продуктивность биоценоза тундры в связи с этим малая: 5-15 ц/га органического вещества в год.

Зона тайги характеризуется относительно благоприятными почвенно-климатическими условиями, особенно для хвойных пород. Тут сформировались богатые и высокопродуктивные биоценозы. Ежегодное образование органического вещества составляет 15-50 ц/га.

Условия умеренной зоны привели к формированию сложных биоценозов лиственных лесов с самой высокой на территории РФ их биологической продуктивностью (до 60 ц/га в год). Разновидностями лиственных лесов являются дубравы, буково-кленовые, смешанные леса и др. Такие леса характеризуются хорошо развитым кустарниковым и травянистым подлесками, что способствует размещению разнообразной по видам и количеству фауны.

Степи - природная зона умеренного пояса полушарий Земли, которая характеризуется недостаточным водообеспечением, поэтому тут преобладает травянистая, преимущественно злаковая растительность (ковыль, типчак и др.). Животный мир разнообразен и богат (лисица, заяц, хомяк, мыши, много птиц, особенно перелетных). В степной зоне размещены важнейшие районы производства зерна, технических, овощных культур и животноводства. Биологическая продуктивность этой природной зоны относительно велика (до 50 ц/га в год).

Пустыни преобладают в Средней Азии. Вследствие незначительного количества осадков и высокой температуры летом растительность занимает менее половины территории этой зоны и имеет специфические приспособления к засушливым условиям. Животный мир разнообразен, его биологические особенности рассматривались раньше. Ежегодное образование органической массы в зоне пустынь не превышает 5 ц/га (рис. 107).

Соленость среды

Соленость водной среды характеризуется содержанием в ней растворимых солей. В пресной воде содержится 0,5-1,0 г/л, а в морской - 10-50 г/л солей.

Соленость водной среды имеет важное значение для ее обитателей. Существуют животные, приспособленные к обитанию только в пресной воде (карпообразные) или только в морской (сельдеобразные). У некоторых же рыб отдельные стадии индивидуального развития проходят при различной солености воды, например угорь обыкновенный обитает в пресных водоемах, а на нерест мигрирует в Саргассово море. Таким водным обитателям необходима соответствующая регуляция солевого баланса в организме.

Механизмы регуляции ионного состава организмов .

Сухопутные животные вынуждены регулировать солевой состав своих жидких тканей для поддержания внутренней среды в постоянном или почти постоянном химически неизмененном ионном состоянии. Основной способ поддерживать солевой баланс у гидробионтов и сухопутных растений - избегать местообитаний с неподходящей соленостью.

Особенно напряженно и безошибочно должны работать такие механизмы у мигрирующих рыб (лосося, кеты, горбуши, угря, осетра), которые периодически переходят из морской воды в пресную или наоборот.

Проще всего происходит осмотическая регуляция в пресной воде. Известно, что в последней концентрация ионов значительно меньше, чем в жидких тканях. Согласно законам осмоса внешняя среда по концентрационному градиенту через полупроницаемые мембраны поступает внутрь клеток, происходит как бы "разведение" внутреннего содержимого. Если бы такой процесс не контролировался, организм мог бы разбухнуть и погибнуть. Однако пресноводные организмы имеют органы, которые выводят наружу лишнюю воду. Сохранению необходимых для жизнедеятельности ионов способствует то, что моча у таких организмов довольно разбавленная (рис. 2, а). Отделение такого разведенного раствора от внутренних жидкостей, вероятно, требует активной химической работы специализированных клеток или органов (почек) и потребления ими значительной доли общей энергии основного обмена.

Наоборот, морские животные и рыбы пьют и усваивают только морскую воду, пополняя тем самым постоянный выход ее из организма во внешнюю среду, которая характеризуется высоким осмотическим потенциалом. При этом одновалентные ионы соленой воды активно выводятся наружу жабрами, а двухвалентные - почками (рис. 2, б). На откачку избыточной воды клетки затрачивают довольно много энергии, поэтому при возрастании солености и уменьшении воды в теле организмы обычно переходят к неактивному состоянию - солевому анабиозу. Это свойственно видам, обитающим в периодически пересыхающих лужах морской воды, лиманах, на литорали (коловратки, бо-коплавы, жгутиковые и др.)

Соленость верхнего слоя земной коры определяется содержанием в ней ионов калия и натрия, и также, как и соленость водной среды, имеет важное значение для ее обитателей и, в первую очередь, растений, которые имеют к ней соответствующую приспособленность. Этот фактор для растений не случаен, он сопровождает их в течение эволюционного процесса. К почвам с высоким содержанием калия и натрия приурочена так называемая солончаковая растительность (солянка, солодка и др.).

Верхний слой земной коры - это почва. Кроме солености почвы различают другие ее показатели: кислотность, гидротермический режим, аэрация почвы и т.п. В совокупности с рельефом эти свойства земной поверхности, получившие название эдафические факторы среды, оказывают экологическое воздействие на ее обитателей.

Эдафические факторы среды

Свойства земной поверхности, оказывающие экологическое воздействие на ее обитателей.


заимствовано

Почвенный профиль

Тип почвы определяется ее составом и цветом.

A - Тундровая почва имеет темную торфянистую поверхность.

B - Пустынная почва светлая, крупнозерниста и бедна органическим веществом

Каштановая почва (С) и чернозем (D) - богатые перегноем луговые почвы, типичные для степей Евразии и прерий Северной Америки.

Красноватый выщелоченный латосол (Е)тропической саванны имеет очень тонкий, но богатый перегноем слой.

Подзолистые почвы типичны для северных широт, где выпадает большое количество осад ков, а испарение очень мало. Они включают богатый органическими веществами коричневый лесной подзол (F), серо-коричневый подзол (Н) и серо-каменистый подзол (I), на котором произрастают как хвойные, так и лиственные деревья. Все они относительно кислые, и в отличие от них красно-желтый подзол (G) сосновых лесов достаточно сильно выщелочен.

В зависимости от эдафических факторов можно выделить ряд экологических групп растений.

По реакции на кислотность почвенного раствора различают:

  • ацидофильные виды, растущие при рН ниже 6,5 (растения торфяных болот, хвощ, сосна, пихта, папоротник);
  • нейтрофильные, предпочитающие почву с нейтральной реакцией (рН 7) (большинство культурных растений);
  • базифильные - растения, которые лучше всего растут на субстрате, имеющем щелочную реакцию (рН более 7) (ель, граб, туя)
  • и индифферентные - могут произрастать на почвах с разным значением рН.

По отношению к химическому составу почвы растения делятся на

  • олиготрофные, малотребовательные к количеству питательных веществ;
  • мезотрофные, требующие умеренного количества минеральных веществ в почве (травянистые многолетники, ель),
  • мезотрофные, нуждающиеся в большом количестве доступных зольных элементов (дуб, плодовые).

По отношению к отдельным элементам питания

  • виды, особенно требовательные к высокому содержанию азота в почве, называются - нитрофилами (крапива, растения скотных дворов);
  • требующие много кальция - кальцефилами (бук, лиственница, порезник, хлопчатник, маслина);
  • растения засоленных почв называются галофитами (солянка, сарсазан), излишек солей некоторые из галофитов способны выделять наружу, где эти соли после высыхания образуют твердые пленки или кристаллические скопления

По отношению к механическому составу

  • растений сыпучих песков - псаммофиты (саксаул, акация песчаная)
  • растений каменистых осыпей, трещин и углублений скал и других подобных местообитаний - литофиты [петрофиты] (можжевельник, дуб скальный)

Рельеф местности и характер грунта существенно влияют на специфику передвижения животных, на распределение видов, жизнедеятельность которых временно или постоянно связана с почвой. От гидротермического режима почв, их аэрации, механического и химического составов зависят характер корневой системы (глубинная, поверхностная), образ жизни почвенной фауны. Химический состав почвы и разнообразие обитателей влияют на ее плодородие. Наиболее плодородными являются черноземные почвы, богатые перегноем.

Как абиотический фактор рельеф оказывает влияние на распределение климатических факторов и, таким образом, на формирование соответствующих флоры и фауны. Например, на южных склонах холмов или гор всегда более высокая температура, лучшая освещенность и соответственно меньшая влажность.

Понравилась статья? Поделиться с друзьями: