Пределы монотонных функций. Монотонная функция

Числовое множество X считается симметричным относительно нуля, если для любого x ЄX значение -х также принадлежит множеству X .

Функция y = f (х X , считается четной X x ЄX , f (х ) = f (-х ).

У четной функции график симметричен относительно оси Оу.

Функция y = f (х ), которая задана на множестве X , считается нечетной , если выполняются следующие условия: а) множество X симметрично относительно нуля; б) для любого x ЄX , f (х ) = -f (-х ).

У нечетной функции график симметричен относительно начала координат.

Функция у = f (x ), x ЄX , называется периодической на X , если найдется число Т (Т ≠ 0) (период функции), что выполняются следующие условия:

  • х - Т и х + Т из множества X для любого х ЄX ;
  • для любого х ЄX , f (х + T ) = f (х - T ) = f (х).

В случае, когда Т - это период функции, то любое число вида , где m ЄZ , m ≠ 0, это также период этой функции. Наименьший из положительных периодов данной функции (если он существует) называется ее главным периодом.

В случае, когда Т - основной период функции, то для построения ее графика можно построить часть графика на любом из промежутков области определения длины Т , а затем сделать параллельный перенос этого участка графика вдоль оси Ох на ±Т , ±2T , ....

Функция y = f (х ), ограниченна снизу на множестве Х А , что для любого х ЄX , А f (х ). График функции, который ограничен снизу на множестве X , полностью располагается выше прямой у = А (это горизонтальная прямая).

Функция у = f (x ), ограниченна сверху на множестве Х (она при этом должна быть определенной на этом множестве), если есть число В , что для любого х ЄX , f (х ) ≤ В . График функции, который ограничен сверху на множестве X, полностью располагается ниже прямой у = В (это горизонтальная линия).

Функция, считается ограниченной на множестве Х (она при этом должна быть определенной на этом множестве), если она ограничена на этом множестве сверху и снизу, т. е. существуют такие числа А и В , что для любого х ЄX выполняются неравенства A f (x ) ≤ B . График функции, которая ограничена на множестве X , полностью располагается в промежутке между прямыми у = А и у = В (это горизонтальные прямые).

Функция у = f (х ), считается ограниченной на множестве Х (она при этом должна быть определенной на этом множестве), если найдется число С > 0, что для любого x ЄX , │f (х )│≤ С .

Функция у = f (х ), х ЄX , называется возрастающей (неубывающей) на подмножестве М СX , когда для каждых х 1 и х 2 из М таких, что х 1 < х 2 , справедливо f (х 1) < f (х 2) (f (х 1) ≤ f (х 2)). Или функция у называется возрастающей на множестве К , если большему значению аргумента из этого множества соответствует большее значение функции.

Функция у = f (х ), х ЄX, называется убывающей (невозрастающей) на подмножестве М СX , когда для каждых х 1 и х 2 из М таких, что х 1 < х 2 , справедливо f (х 1) > f (х 2) (f (х 1) ≥ f (х 2)). Или функция у называется убывающей на множестве К , если большему значению аргумента из этого множества соответствует меньшее значение функции.

Функция у = f (x ), х ЄX , называется монотонной на подмножестве М СX , если она является убывающей (невозрастающей) или возрастающей (неубывающей) на М .

Если функция у = f (х ), х ЄX , является убывающей или возрастающей на подмножестве М СX , то такая функция называется строго монотонной на множестве М .

Число М называют наибольшим значением функции у на множестве К , если это число является значением функции при определенном значении х 0 аргумента из множества К , а при других значениях аргумента из множества К значения функции у не больше числа М .

Число m называют наименьшим значением функции у на множестве К , если это число является значением функции при определенном значении х 0 аргумента из множества К , а при других значениях аргумента х из множества К значения функции у не меньше числа m .

Основные свойства функции , с которых лучше начинать ее изучение и исследование это область ее определения и значения. Следует запомнить, как изображаются графики элементарных функций. Только потом можно переходить к построению более сложных графиков. Тема "Функции" имеет широкие приложения в экономике и других областях знания. Функции изучают на протяжении всего курса математики и продолжают изучать в высших учебных заведениях . Там функции исследуются при помощи первой и второй производных.

Функция y=f(x) называется возрастающей на интервале (a;b) , если для любых x 1 и x 2 x 1 , справедливо f(x 1) Например, функции y=a x , y=log a x при a>1, y=arctg x, y=arcsin x, (nÎN) возрастают на всей своей области определения.

График возрастающей функции

· Функция y = f(x) называется убывающей на интервале (a;b), если для любых x 1 и x 2 из этого интервала таких, что x 1 , справедливо f(x 1)>f(x 2). Например, функции y=a x , y=log a x при 0<a<1, y=arcctg x, y=arccos x убывают на всей своей области определения.

График убывающей функции

· Убывающие и возрастающие функции вместе образуют класс монотонных функций. Монотонные функции обладают рядом специальных свойств.

Функция f(х), монотонная на отрезке [а,b ], ограничена на этом отрезке;

· сумма возрастающих (убывающих) функций является возрастающей (убывающей) функцией;

· если функция f возрастает (убывает) и n – нечетное число, то также возрастает (убывает);

· если f"(x)>0 для всех xÎ(a,b), то функция y=f(x) является возрастающей на интервале (a,b);

· если f"(x)<0 для всех xÎ(a,b), то функция y=f(x) является убывающей на интервале (a,b);

· если f(x) – непрерывная и монотонная функция на множестве Х , то уравнение f(x)=C , где С – данная константа, может иметь на Х не более одного решения;

· если на области определения уравнения f(x)=g(x) функция f(x) возрастает, а функция g(x) убывает, то уравнение не может иметь более одного решения.

Теорема. (достаточное условие монотонности функции). Если непрерывная на отрезке [а, b ] функция у = f (х ) в каждой точке интервала (а, b ) имеет положи­тельную (отрицательную) производную, то эта функция возрастает (убывает) на отрезке [а, b ].

Доказательство. Пусть >0 для всех хÎ (а,b ). Рассмотрим два произвольных значения x 2 > x 1 , принадлежащих [а, b ]. По формуле Лагранжа х 1 <с < х 2 . (с ) > 0 и х 2 – х 1 > 0, поэтому >0, откуда > , то есть функция f(х) возрастает на отрезке [а, b ]. Аналогично доказывается вторая часть теоремы.

Теорема 3. (необходимый признак существования экстремума функции). Если дифференцируемая в точке c функция у = f (х ) имеет в этой точке экстремум, то .

Доказательство. Пусть, например, функция у = f (х ) имеет в точке c максимум. Это означает, что существует такая проколотая окрестность точки c, что для всех точек x этой окрестности выполняется f (x ) < f (c ), то есть f (c ) – наибольшее зна­чение функции в этой окрестности. Тогда по теореме Ферма .

Аналогично доказывается случай минимума в точке c.

Замечание. Функция может иметь экстремум в точке, в которой ее производная не существует. Например, функция имеет минимум в точке x = 0, хотя не существует. Точки, в которых производная функции равна нулю или не сущест­вует, называются критическими точками функции. Однако не во всех критиче­ских точках функция имеет экстремум. Например, функция у = x 3 не имеет экс­тремумов, хотя ее производная =0.

Теорема 4. (достаточный признак существования экстремума). Если непрерывная функция у = f (x ) имеет производную во всех точках некоторого интервала, содержащего критическую точку С (за исключением, может быть, самой этой точки), и если производная при переходе аргумента слева направо через критическую точку С меняет знак с плюса на минус, то функция в точке С имеет максимум, а при перемене знака с минуса на плюс – минимум.

Доказательство. Пусть c – критическая точка и пусть, например, при переходе аргумента через точку c меняет знак с плюса на минус. Это означает, что на некотором интервале(c–e; c) функция возрастает, а на интервале (c; c+e) – убывает (при e >0). Следовательно, в точке с функция имеет максимум. Аналогично доказывается случай минимума.

Замечание. Если производная не меняет знака при переходе аргумента через критическую точку, то функция в этой точке не имеет экстремума.

Так как определения предела и непрерывности для функции нескольких переменных практически совпадает с соответствующими определениями для функции одной переменной, то для функций нескольких переменных сохраняются все свойства пределов и непрерывных функций


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-12

Урок и презентация по алгебре в 10 классе на тему: "Исследование функции на монотонность. Алгоритм исследования"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Пособия и тренажеры в интернет-магазине "Интеграл" для 10 класса от 1С
Алгебраические задачи с параметрами, 9–11 классы
Программная среда "1С: Математический конструктор 6.1"

Что будем изучать:
1. Убывающие и возрастающие функции.
2. Связь производной и монотонности функции.
3. Две важные теоремы о монотонности.
4. Примеры.

Ребята, ранее мы с вами рассмотрели множество различных функций и строили их графики. Теперь давайте введем новые правила, которое работают для всех функций, которые мы рассматривали и еще будем рассматривать.

Убывающие и возрастающие функции

Давайте рассмотрим понятие возрастающей и убывающей функции. Ребята, а что такое функция?

Функцией называется соответствие y= f(x), в котором каждому значению x ставится в соответствие единственное значение y.

Посмотрим на график некоторой функции:


На нашем графике видно: чем больше x, тем меньше y. Итак, давайте дадим определение убывающей функции. Функция называется убывающей, если большему значению аргумента соответствует меньшее значение функции.

Если x2 > x1, то f(x2) Теперь давайте рассмотрим график такой функции:
На этом графике видно: чем больше x, тем больше y. Итак, давайте дадим определение возрастающей функции. Функция называется возрастающей, если большему значению аргумента соответствует большее значения функции.
Если x2 > x1, то f(x2 > f(x1) или: чем больше x, тем больше y.

Если функция возрастает или убывает на некотором промежутке, то говорят, что она монотонна на данном промежутке .

Связь производной и монотонности функции

Ребята, а теперь давайте подумаем, как можно применять понятие производной при исследовании графиков функций. Нарисуем график возрастающей дифференцируемой функции и проведем пару касательных к нашему графику.

Если посмотреть на наши касательные или зрительно провести любую другую касательную, то можно заметить, что угол между касательной и положительным направлением оси абсцисс будет острым. Значит, касательная имеет положительный угловой коэффициент. Угловой коэффициент касательной равен значению производной в абсциссе точки касания. Таким образом, значение производной положительно во всех точках нашего графика. Для возрастающей функции выполняет следующее неравенство: f"(x) ≥ 0, для любой точки x.

Ребята, теперь давайте посмотрим на график некоторой убывающей функции и построим касательные к графику функции.

Посмотрим на касательные и зрительно проведем любую другую касательную. Мы заметим, что угол между касательной и положительным направлением оси абсцисс - тупой, а значит касательная имеет отрицательный угловой коэффициент. Таким образом, значение производной отрицательно во всех точках нашего графика. Для убывающей функции выполняет следующее неравенство: f"(x) ≤ 0, для любой точки x.


Итак, монотонность функции зависит от знака производной:

Если функция возрастает на промежутке и имеет производную на этом промежутке, то эта производная будет не отрицательна.

Если функция убывает на промежутке и имеет производную на этом промежутке, то эта производная будет не положительна.

Важно , чтобы промежутки, на которых мы рассматриваем функцию были открытыми!

Две важные теоремы о монотонности

Теорема 1. Если во всех точках открытого промежутка Х выполняется неравенство f’(x) ≥ 0 (причем равенство производной нулю либо не выполняется, либо выполняется, но лишь в конечном множестве точек), то функция y= f(x) возрастает на промежутке Х.

Теорема 2. Если во всех точках открытого промежутка Х выполняется неравенство f’(x) ≤ 0 (причем равенство производной нулю либо не выполняется, либо выполняется, но лишь в конечном множестве точек), то функция y= f(x) убывает на промежутке Х.

Теорема 3. Если во всех точках открытого промежутка Х выполняется равенство
f’(x)= 0, то функция y= f(x) постоянна на этом промежутке.

Примеры исследования функции на монотонность

1) Доказать, что функция y= x 7 + 3x 5 + 2x - 1 возрастает на всей числовой прямой.

Решение: Найдем производную нашей функции: y"= 7 6 + 15x 4 + 2. Т.к. степень при x четная, то степенная функция принимает только положительные значения. Тогда y" > 0 для любого x, а значит по теореме 1, наша функция возрастает на всей числовой прямой.

2) Доказать, что функция убывает: y= sin(2x) - 3x.

Найдем производную нашей функции: y"= 2cos(2x) - 3.
Решим неравенство:
2cos(2x) - 3 ≤ 0,
2cos(2x) ≤ 3,
cos(2x) ≤ 3/2.
Т.к. -1 ≤ cos(x) ≤ 1, значит наше неравенство выполняется для любых x, тогда по теореме 2 функция y= sin(2x) - 3x убывает.

3) Исследовать на монотонность функцию: y= x 2 + 3x - 1.

Решение: Найдем производную нашей функции: y"= 2x + 3.
Решим неравенство:
2x + 3 ≥ 0,
x ≥ -3/2.
Тогда наша функция возрастает при x ≥ -3/2, а убывает при x ≤ -3/2.
Ответ: При x ≥ -3/2 - функция возрастает, при x ≤ -3/2 - функция убывает.

4) Исследовать на монотонность функцию: y= $\sqrt{3x - 1}$.

Решение: Найдем производную нашей функции: y"= $\frac{3}{2\sqrt{3x - 1}}$.
Решим неравенство: $\frac{3}{2\sqrt{3x - 1}}$ ≥ 0.

Наше неравенство больше либо равно нуля:
$\sqrt{3x - 1}$ ≥ 0,
3x - 1 ≥ 0,
x ≥ 1/3.
Решим неравенство:
$\frac{3}{2\sqrt{3x-1}}$ ≤ 0,

$\sqrt{3x-1}$ ≤ 0,
3x - 1 ≤ 0.
Но это невозможно, т.к. квадратный корень определен только для положительных выражений, значит промежутков убывания у нашей функции нет.
Ответ: при x ≥ 1/3 функция возрастает.

Задачи для самостоятельного решения

а) Доказать, что функция y= x 9 + 4x 3 + 1x - 10 возрастает на всей числовой прямой.
б) Доказать, что функция убывает: y= cos(5x) - 7x.
в) Исследовать на монотонность функцию: y= 2x 3 + 3x 2 - x + 5.
г) Исследовать на монотонность функцию: y = $\frac{3x-1}{3x+1}$.

Теорема о пределе монотонной функции. Приводится доказательство теоремы, используя два метода. Также даны определения строго возрастающей, неубывающей, строго убывающей и невозрастающей функций. Определение монотонной функции.

Определения

Определения возрастающей и убывающей функций
Пусть функция f(x) определена на некотором множестве действительных чисел X .
Функция называется строго возрастающей (строго убывающей) , если для всех x′, x′′ ∈ X таких что x′ < x′′ выполняется неравенство:
f(x′) < f(x′′) ( f(x′) > f(x′′) ) .
Функция называется неубывающей (невозрастающей) , если для всех x′, x′′ ∈ X таких что x′ < x′′ выполняется неравенство:
f(x′) ≤ f(x′′) ( f(x′) ≥ f(x′′) ) .

Отсюда следует, что строго возрастающая функция также является неубывающей. Строго убывающая функция также является невозрастающей.

Определение монотонной функции
Функция называется монотонной , если она неубывающая или невозрастающая.

Для исследования монотонности функции на некотором множестве X , нужно найти разность ее значений в двух произвольных точках , принадлежащих этому множеству. Если , то функция строго возрастает; если , то функция не убывает; если , то строго убывает; если , то не возрастает.

Если на некотором множестве функция положительна: , то для определения монотонности, можно исследовать частное от деления ее значений в двух произвольных точках этого множества. Если , то функция строго возрастает; если , то функция не убывает; если , то строго убывает; если , то не возрастает.

Теорема
Пусть функция f(x) не убывает на интервале (a, b) , где .
Если она ограничена сверху числом M : , то существует конечный левый предел в точке b : . Если f(x) не ограничена сверху, то .
Если f(x) ограничена снизу числом m : , то существует конечный правый предел в точке a : . Если f(x) не ограничена снизу, то .

Если точки a и b являются бесконечно удаленными, то в выражениях под знаками пределов подразумевается, что .
Эту теорему можно сформулировать более компактно.

Пусть функция f(x) не убывает на интервале (a, b) , где . Тогда существуют односторонние пределы в точках a и b :
;
.

Аналогичная теорема для невозрастающей функции.

Пусть функция не возрастает на интервале , где . Тогда существуют односторонние пределы:
;
.

Следствие
Пусть функция является монотонной на интервале . Тогда в любой точке из этого интервала, существуют односторонние конечные пределы функции :
и .

Доказательство теоремы

Функция не убывает

b - конечное число
Функция ограничена сверху


1.1.1. Пусть функция ограничена сверху числом M : при .


.
;
.

Поскольку функция не убывает, то при . Тогда
при .
Преобразуем последнее неравенство:
;
;
.
Поскольку , то . Тогда
при .


при .
«Определения односторонних пределов функции в конечной точке»).

Функция не ограничена сверху

1. Пусть функция не убывает на интервале .
1.1. Пусть число b конечное: .
1.1.2. Пусть функция не ограничена сверху.
Докажем, что в этом случае существует предел .


.


при .

Обозначим . Тогда для любого существует , так что
при .
Это означает, что предел слева в точке b равен (см. «Определения односторонних бесконечных пределов функции в конечной точке»).

b рано плюс бесконечности
Функция ограничена сверху

1. Пусть функция не убывает на интервале .
1.2.1. Пусть функция ограничена сверху числом M : при .
Докажем, что в этом случае существует предел .

Поскольку функция ограничена сверху, то существует конечная верхняя грань
.
Согласно определению точной верхней грани, выполняются следующие условия:
;
для любого положительного существует такой аргумент , для которого
.

Поскольку функция не убывает, то при . Тогда при . Или
при .

Итак, мы нашли, что для любого существует число , так что
при .
«Определения односторонних пределов на бесконечности»).

Функция не ограничена сверху

1. Пусть функция не убывает на интервале .
1.2. Пусть число b равно плюс бесконечности: .
1.2.2. Пусть функция не ограничена сверху.
Докажем, что в этом случае существует предел .

Поскольку функция не ограничена сверху, то для любого числа M существует такой аргумент , для которого
.

Поскольку функция не убывает, то при . Тогда при .

Итак, для любого существует число , так что
при .
Это означает, что предел при равен (см. «Определения односторонних бесконечных пределов на бесконечности»).

Функция не возрастает

Теперь рассмотрим случай, когда функция не возрастает. Можно, как и выше, рассмотреть каждый вариант по отдельности. Но мы охватим их сразу. Для этого используем . Докажем, что в этом случае существует предел .

Рассмотрим конечную нижнюю грань множества значений функции:
.
Здесь B может быть как конечным числом, так и бесконечно удаленной точкой . Согласно определению точной нижней грани, выполняются следующие условия:
;
для любой окрестности точки B существует такой аргумент , для которого
.
По условию теоремы, . Поэтому .

Поскольку функция не возрастает, то при . Поскольку , то
при .
Или
при .
Далее замечаем, что неравенство определяет левую проколотую окрестность точки b .

Итак, мы нашли, что для любой окрестности точки , существует такая проколотая левая окрестность точки b , что
при .
Это означает, что предел слева в точке b равен :

(см. универсальное определение предела функции по Коши).

Предел в точке a

Теперь покажем, что существует предел в точке a и найдем его значение.

Рассмотрим функцию . По условию теоремы, функция является монотонной при . Заменим переменную x на - x (или сделаем подстановку , а затем заменим переменную t на x ). Тогда функция является монотонной при . Умножая неравенства на -1 и меняя их порядок приходим к выводу, что функция является монотонной при .

Аналогичным способом легко показать, что если не убывает, то не возрастает. Тогда согласно доказанному выше, существует предел
.
Если не возрастает, то не убывает. В этом случае существует предел
.

Теперь осталось показать, что если существует предел функции при , то существует предел функции при , и эти пределы равны:
.

Введем обозначение:
(1) .
Выразим f через g :
.
Возьмем произвольное положительное число . Пусть есть эпсилон окрестность точки A . Эпсилон окрестность определяется как для конечных, так и для бесконечных значений A (см. «Окрестность точки»). Поскольку существует предел (1), то, согласно определению предела, для любого существует такое , что
при .

Пусть a - конечное число. Выразим левую проколотую окрестность точки -a , используя неравенства:
при .
Заменим x на -x и учтем, что :
при .
Последние два неравенства определяют проколотую правую окрестность точки a . Тогда
при .

Пусть a - бесконечное число, . Повторяем рассуждения.
при ;
при ;
при ;
при .

Итак, мы нашли, что для любого существует такое , что
при .
Это означает, что
.

Теорема доказана.

Возрастание, убывание и экстремумы функции

Нахождение интервалов возрастания, убывания и экстремумов функции является как самостоятельной задачей, так и важнейшей частью других заданий, в частности, полного исследования функции . Начальные сведения о возрастании, убывании и экстремумах функции даны в теоретической главе о производной , которую я настоятельно рекомендую к предварительному изучению (либо повторению) – ещё и по той причине, что нижеследующий материал базируется на самой сути производной, являясь гармоничным продолжением указанной статьи. Хотя, если времени в обрез, то возможна и чисто формальная отработка примеров сегодняшнего урока.

А сегодня в воздухе витает дух редкого единодушия, и я прямо чувствую, что все присутствующие горят желанием научиться исследовать функцию с помощью производной . Поэтому на экранах ваших мониторов незамедлительно появляется разумная добрая вечная терминология.

Зачем? Одна из причин самая что ни на есть практическая: чтобы было понятно, что от вас вообще требуется в той или иной задаче !

Монотонность функции. Точки экстремума и экстремумы функции

Рассмотрим некоторую функцию . Упрощённо полагаем, что она непрерывна на всей числовой прямой:

На всякий случай сразу избавимся от возможных иллюзий, особенно это касается тех читателей, кто недавно ознакомился с интервалами знакопостоянства функции . Сейчас нас НЕ ИНТЕРЕСУЕТ , как расположен график функции относительно оси (выше, ниже, где пересекает ось). Для убедительности мысленно сотрите оси и оставьте один график. Потому что интерес именно в нём.

Функция возрастает на интервале, если для любых двух точек этого интервала, связанных отношением , справедливо неравенство . То есть, бОльшему значению аргумента соответствует бОльшее значение функции, и её график идёт «снизу вверх». Демонстрационная функция растёт на интервале .

Аналогично, функция убывает на интервале, если для любых двух точек данного интервала, таких, что , справедливо неравенство . То есть, бОльшему значению аргумента соответствует мЕньшее значение функции, и её график идёт «сверху вниз». Наша функция убывает на интервалах .

Если функция возрастает или убывает на интервале, то её называют строго монотонной на данном интервале. Что такое монотонность? Понимайте в буквальном смысле – однообразие.

Также можно определить неубывающую функцию (смягчённое условие в первом определении) и невозрастающую функцию (смягчённое условие во 2-м определении). Неубывающую или невозрастающую функцию на интервале называют монотонной функцией на данном интервале (строгая монотонность – частный случай «просто» монотонности) .

Теория рассматривает и другие подходы к определению возрастания/убывания функции, в том числе на полуинтервалах, отрезках, но чтобы не выливать на вашу голову масло-масло-масляное, договоримся оперировать открытыми интервалами с категоричными определениями – это чётче, и для решения многих практических задач вполне достаточно.

Таким образом, в моих статьях за формулировкой «монотонность функции» почти всегда будут скрываться интервалы строгой монотонности (строгого возрастания или строгого убывания функции).

Окрестность точки. Слова, после которых студенты разбегаются, кто куда может, и в ужасе прячутся по углам. …Хотя после поста Пределы по Коши уже, наверное, не прячутся, а лишь слегка вздрагивают =) Не беспокойтесь, сейчас не будет доказательств теорем математического анализа – окрестности мне потребовались, чтобы строже сформулировать определения точек экстремума . Вспоминаем:

Окрестностью точки называют интервал, который содержит данную точку, при этом для удобства интервал часто полагают симметричным. Например, точка и её стандартная - окрестность:

Собственно, определения:

Точка называется точкой строгого максимума , если существует её -окрестность, для всех значений которой за исключением самой точки выполнено неравенство . В нашем конкретном примере это точка .

Точка называется точкой строгого минимума , если существует её -окрестность, для всех значений которой за исключением самой точки выполнено неравенство . На чертеже – точка «а».

Примечание : требование симметричности окрестности вовсе не обязательно. Кроме того, важен сам факт существования окрестности (хоть малюсенькой, хоть микроскопической), удовлетворяющей указанным условиям

Точки называют точками строго экстремума или просто точками экстремума функции. То есть это обобщенный термин точек максимума и точек минимума.

Как понимать слово «экстремум»? Да так же непосредственно, как и монотонность. Экстремальные точки американских горок.

Как и в случае с монотонностью, в теории имеют место и даже больше распространены нестрогие постулаты (под которые, естественно, подпадают рассмотренные строгие случаи!) :

Точка называется точкой максимума , если существует её окрестность, такая, что для всех
Точка называется точкой минимума , если существует её окрестность, такая, что для всех значений данной окрестности выполнено неравенство .

Заметьте, что согласно последним двум определениям, любая точка функции-константы (либо «ровного участка» какой-нибудь функции) считается как точкой максимума, так и точкой минимума! Функция , к слову, одновременно является и невозрастающей и неубывающей, то есть монотонной. Однако оставим сии рассуждения теоретикам, поскольку на практике мы почти всегда созерцаем традиционные «холмы» и «впадины» (см. чертёж) с уникальным «царём горы» или «принцессой болота» . Как разновидность, встречается остриё , направленное вверх либо вниз, например, минимум функции в точке .

Да, кстати, о королевских особах:
– значение называют максимумом функции;
– значение называют минимумом функции.

Общее названиеэкстремумы функции.

Пожалуйста, будьте аккуратны в словах!

Точки экстремума – это «иксовые» значения.
Экстремумы – «игрековые» значения.

! Примечание : иногда перечисленными терминами называют точки «икс-игрек», лежащие непосредственно на САМОМ ГРАФИКЕ функции.

Сколько может быть экстремумов у функции?

Ни одного, 1, 2, 3, … и т.д. до бесконечности. Например, у синуса бесконечно много минимумов и максимумов.

ВАЖНО! Термин «максимум функции» не тождественен термину «максимальное значение функции». Легко заметить, что значение максимально лишь в локальной окрестности, а слева вверху есть и «покруче товарищи». Аналогично, «минимум функции» – не то же самое, что «минимальное значение функции», и на чертеже мы видим, что значение минимально только на определённом участке. В этой связи точки экстремума также называют точками локального экстремума , а экстремумы – локальными экстремумами . Ходят-бродят неподалёку и глобальные собратья. Так, любая парабола имеет в своей вершине глобальный минимум или глобальный максимум . Далее я не буду различать типы экстремумов, и пояснение озвучено больше в общеобразовательных целях – добавочные прилагательные «локальный»/«глобальный» не должны заставать врасплох.

Подытожим наш небольшой экскурс в теорию контрольным выстрелом: что подразумевает задание «найдите промежутки монотонности и точки экстремума функции»?

Формулировка побуждает найти:

– интервалы возрастания/убывания функции (намного реже фигурирует неубывание, невозрастание);

– точки максимума и/или точки минимума (если таковые существуют). Ну и от незачёта подальше лучше найти сами минимумы/максимумы;-)

Как всё это определить? С помощью производной функции!

Как найти интервалы возрастания, убывания,
точки экстремума и экстремумы функции?

Многие правила, по сути, уже известны и понятны из урока о смысле производной .

Производная тангенса несёт бодрую весть о том, что функция возрастает на всей области определения .

С котангенсом и его производной ситуация ровно противоположная.

Арксинус на интервале растёт – производная здесь положительна: .
При функция определена, но не дифференцируема. Однако в критической точке существует правосторонняя производная и правостороння касательная, а на другом краю – их левосторонние визави.

Думаю, вам не составит особого труда провести похожие рассуждения для арккосинуса и его производной.

Все перечисленные случаи, многие из которых представляют собой табличные производные , напоминаю, следуют непосредственно из определения производной .

Зачем исследовать функцию с помощью производной?

Чтобы лучше узнать, как выглядит график этой функции : где он идёт «снизу вверх», где «сверху вниз», где достигает минимумов максимумов (если вообще достигает). Не все функции такие простые – в большинстве случаев у нас вообще нет ни малейшего представления о графике той или иной функции.

Настала пора перейти к более содержательным примерам и рассмотреть алгоритм нахождения интервалов монотонности и экстремумов функции :

Пример 1

Найти интервалы возрастания/убывания и экстремумы функции

Решение :

1) На первом шаге нужно найти область определения функции , а также взять на заметку точки разрыва (если они существуют). В данном случае функция непрерывна на всей числовой прямой, и данное действие в известной степени формально. Но в ряде случаев здесь разгораются нешуточные страсти, поэтому отнесёмся к абзацу без пренебрежения.

2) Второй пункт алгоритма обусловлен

необходимым условием экстремума:

Если в точке есть экстремум, то либо значения не существует .

Смущает концовка? Экстремум функции «модуль икс».

Условие необходимо, но не достаточно , и обратное утверждение справедливо далеко не всегда. Так, из равенства ещё не следует, что функция достигает максимума или минимума в точке . Классический пример уже засветился выше – это кубическая парабола и её критическая точка .

Но как бы там ни было, необходимое условие экстремума диктует надобность в отыскании подозрительных точек. Для этого следует найти производную и решить уравнение :

В начале первой статьи о графиках функции я рассказывал, как быстро построить параболу на примере : «…берём первую производную и приравниваем ее к нулю: …Итак, решение нашего уравнения: – именно в этой точке и находится вершина параболы…». Теперь, думаю, всем понятно, почему вершина параболы находится именно в этой точке =) Вообще, следовало бы начать с похожего примера и здесь, но он уж слишком прост (даже для чайника). К тому же, аналог есть в самом конце урока о производной функции . Поэтому повысим степень:

Пример 2

Найти промежутки монотонности и экстремумы функции

Это пример для самостоятельного решения. Полное решение и примерный чистовой образец оформления задачи в конце урока.

Наступил долгожданный момент встречи с дробно-рациональными функциями:

Пример 3

Исследовать функцию с помощью первой производной

Обратите внимание, как вариативно можно переформулировать фактически одно и то же задание.

Решение :

1) Функция терпит бесконечные разрывы в точках .

2) Детектируем критические точки. Найдём первую производную и приравняем её к нулю:

Решим уравнение . Дробь равна нулю, когда её числитель равен нулю:

Таким образом, получаем три критические точки:

3) Откладываем на числовой прямой ВСЕ обнаруженные точки и методом интервалов определяем знаки ПРОИЗВОДНОЙ:

Напоминаю, что необходимо взять какую-нибудь точку интервала, вычислить в ней значение производной и определить её знак. Выгоднее даже не считать, а «прикинуть» устно. Возьмём, например, точку , принадлежащую интервалу , и выполним подстановку: .

Два «плюса» и один «минус» дают «минус», поэтому , а значит, производная отрицательна и на всём интервале .

Действие, как вы понимаете, нужно провести для каждого из шести интервалов. Кстати, обратите внимание, что множитель числителя и знаменатель строго положительны для любой точки любого интервала, что существенно облегчает задачу.

Итак, производная сообщила нам, что САМА ФУНКЦИЯ возрастает на и убывает на . Однотипные интервалы удобно скреплять значком объединения .

В точке функция достигает максимума:
В точке функция достигает минимума:

Подумайте, почему можно заново не пересчитывать второе значение;-)

При переходе через точку производная не меняет знак, поэтому у функции там НЕТ ЭКСТРЕМУМА – она как убывала, так и осталась убывающей.

! Повторим важный момент : точки не считаются критическими – в них функция не определена . Соответственно, здесь экстремумов не может быть в принципе (даже если производная меняет знак).

Ответ : функция возрастает на и убывает на В точке достигается максимум функции: , а в точке – минимум: .

Знание интервалов монотонности и экстремумов вкупе с установленными асимптотами даёт уже очень хорошее представление о внешнем виде графика функции. Человек среднего уровня подготовки способен устно определить, что у графика функции есть две вертикальные асимптоты и наклонная асимптота . Вот наш герой:

Постарайтесь ещё раз соотнести результаты исследования с графиком данной функции.
В критической точке экстремума нет, но существует перегиб графика (что, как правило, и бывает в похожих случаях).

Пример 4

Найти экстремумы функции

Пример 5

Найти интервалы монотонности, максимумы и минимумы функции

…прямо какой-то Праздник «икса в кубе» сегодня получается....
Тааак, кто там на галёрке предложил за это выпить? =)

В каждой задаче есть свои содержательные нюансы и технические тонкости, которые закомментированы в конце урока.

Понравилась статья? Поделиться с друзьями: