Облачность на земле. Облачность

Степень покрытия небесного свода облаками называют количеством облаков или облачностью. Облачность выражается в десятых долях покрытия неба (0–10 баллов). При облаках, полностью закрывающих небо, облачность обозначается числом 10, при совершенно ясном небе – числом 0. При выводе средних величин можно давать и десятые доли единицы. Так, например, число 5,7 означает, что облака покрывают 57% небосвода.

Облачность обычно определяется наблюдателем на глаз. Но существуют и приборы в виде выпуклого полусферического зеркала, отражающего весь небосвод, фотографируемого сверху, либо в виде фотокамеры с широкоугольным объективом.

Принято оценивать отдельно общее количество облаков (общую облачность) и количество нижних облаков (нижнюю облачность). Это существенно, потому что высокие, а отчасти и средние облака меньше затеняют солнечный свет и менее важны в практическом отношении (например, для авиации). Дальше речь будет идти только об общей облачности.

Облачность имеет большое климатообразующее значение. Она влияет на оборот тепла на Земле: отражает прямую солнечную радиацию и, следовательно, уменьшает ее приток к земной поверхности; она также увеличивает рассеяние радиации, уменьшает эффективное излучение, меняет условия освещенности. Хотя современные самолеты летают выше среднего яруса облаков и даже выше верхнего яруса, облачность может затруднять взлет и поездку самолета, мешать ориентации без приборов, может вызвать обледенение самолета и др.

Суточный ход облачности сложен и в большей степени зависит от родов облаков. Слоистые и слоисто-кучевые облака, связанные с выхолаживанием воздуха от земной поверхности и со срав-нительно слабым турбулентным переносом водяного пара вверх, имеют максимум ночью и утром. Кучевообразные облака, связанные с неустойчивостью стратификации и хорошо выраженной конвекцией, возникают преимущественно в дневные часы и исчезают к ночи. Правда, над морем, где температура подстилающей поверхности почти не имеет суточного хода, облака конвекции также его почти не имеют или слабый максимум приходится на утро. Облака упорядоченного восходящего движения, связанные с фронтами, не имеют ясного суточного хода.

В результате в суточном ходе облачности над сушей в умеренных широтах летом намечаются два максимума: утром и более значительный после полудня. В холодное время года, когда конвек-ция слаба или отсутствует, преобладает утренний максимум, который может стать единственным. В тропиках на суше весь год преобладает послеполуденный максимум, так как важнейшим облакообразующим процессом там является конвекция.

В годовом ходе облачность в разных климатических областях меняется по-разному. Над океанами высоких и средних широт годовой ход вообще невелик, с максимумом летом или осенью и минимумом весной, Так, на о. Новая Земля значения облачности в сентябре и октябре – 8,5, в апреле – 7,0 б баллов.

В Европе максимум приходится на зиму, когда наиболее развита циклоническая деятельность с ее фронтальной облачностью, а минимум – на весну или лето, когда преобладают облака конвекции. Так, в Москве значения облачности в декабре – 8,5, в мае – 6,4; в Вене в декабре – 7,8, в августе – 5,0 баллов.

В Восточной Сибири и Забайкалье, где зимой господствуют антициклоны, максимум приходится на лето или осень, а минимум на зиму. Так, в Красноярске значения облачности составляют в октябре – 7,3, в феврале – 5,3.

В субтропиках, где летом преобладают антициклоны, а зимой – циклоническая деятельность, максимум приходится на зиму, минимум на лето, как и в умеренных широтах Европы, но амплитуда больше. Так, в Афинах в декабре 5,9, в июне 1,1 балла. Таков же годовой ход и в Средней Азии, где летом воздух очень далек от насыщения вследствие высоких температур, а зимой существует довольно интенсивная циклоническая деятельность: в Ташкенте в январе 6,4, в июле 0,9 балла.

В тропиках, в областях пассатов, максимум облачности приходится на лето, а минимум на зиму; в Камеруне в июле – 8,9, в январе – 5,4 балла, В муссонном климате тропиков годовой ход такой же, но резче выражен: в Дели в июле 6,0, в ноябре 0,7 балла.

На высокогорных станциях в Европе минимум облачности наблюдается главным образом зимой, когда слоистые облака, закрывающие долины, лежат ниже гор (если не говорить о наветренных склонах), максимум – летом при развитии облаков конвекции (С.П. Хромов, М.А. Петросянц, 2004).


Оглавление
Климатология и метеорология
ДИДАКТИЧЕСКИЙ ПЛАН
Метеорология и климатология
Атмосфера, погода, климат
Метеорологические наблюдения
Применение карт
Метеорологическая служба и Всемирная Метеорологическая Организация (ВМО)
Климатообразующие процессы
Астрономические факторы
Геофизические факторы
Метеорологические факторы
О солнечной радиации
Тепловое и лучистое равновесие Земли
Прямая солнечная радиация
Изменения солнечной радиации в атмосфере и на земной поверхности
Явления, связанные с рассеянием радиации
Суммарная радиация, отражение солнечной радиации, поглощенная радиация, ФАР, альбедо Земли
Излучение земной поверхности
Встречное излучение или противоизлучение
Радиационный баланс земной поверхности
Географическое распределение радиационного баланса
Атмосферное давление и барическое поле
Барические системы
Колебания давления
Ускорение воздуха под действием барического градиента
Отклоняющая сила вращения Земли
Геострофический и градиентный ветер
Барический закон ветра
Фронты в атмосфере
Тепловой режим атмосферы
Тепловой баланс земной поверхности
Суточный и годовой ход температуры на поверхности почвы
Температуры воздушных масс
Годовая амплитуда температуры воздуха
Континентальность климата
Облачность и осадки
Испарение и насыщение
Влажность
Географическое распределение влажности воздуха
Конденсация в атмосфере
Облака
Международная классификация облаков
Облачность, ее суточный и годовой ход
Осадки, выпадающие из облаков (классификация осадков)
Характеристика режима осадков
Годовой ход осадков
Климатическое значение снежного покрова
Химия атмосферы
Химический состав атмосферы Земли
Химический состав облаков
Химический состав осадков
Кислотность осадков
Общая циркуляция атмосферы
Погода в циклоне

Определение и запись общего количества облаков, а так же определение и запись количества облаков нижнего и среднего ярусов и их высот.

Определение и запись общего количества облаков

Количество облаков выражается в баллах по 10-бальной шкале от 0 до 10. На глаз оценивается сколько десятых частей неба покрыто облаками.

Если облаков нет или облачность покрывает менее 1/10 неба, облачность оценивается баллом 0. Если облаками покрыты 1/10, 2/10, 3/10 части неба и т.д., ставятся отметки соответственно 1, 2, 3 и т.д. Цифра 10 ставится только тогда, когда всё небо сплошь покрыто облаками. Если в небе наблюдаются хотя бы и очень небольшие просветы, записывается 10

Если количество облаков больше 5 баллов (т.е. облаками покрыто половины неба) удобнее оценить площадь не занятую облаками и полученную величину, выраженную в баллах вычесть из 10. Остаток покажет количество облаков в баллах.

Для того чтобы оценить, какая часть неба свободна от облаков, надо мысленно суммировать все те просветы ясного неба (окна), которые имеются между отдельными облаками или грядами облаков. Но те просветы, которые существуют внутри нескольких облаков (перистых, перисто-кучевых и почти всех видов высоко-кучевых), присущи им по внутренней структуре и по размерам очень малы, суммированию не подлежат. Если такие имеющие просветы облака покрывают всё небо, ставится Цифра 10

Определение и запись количества облаков нижнего и среднего ярусов и их высот.

Кроме общего кол-ва облаков N необходимо определять общее кол-во слоисто-кучевых, слоистых, кучевых, кучево-дождевых и разорвано-дождевых облаков Nh (форм, записываемых в строку “СL“) или, если нет их, то общее кол-во высоко-кучевых, высоко-слоистых и слоисто-дождевых облаков (форм, записываемых в строку “СМ “). Количество этих облаков Nh определяется по тем же правилам, что и общего количества облаков.

Высоту облаков необходимо оценить на глаз, стремясь к точности 50-200 м. Если же это затруднительно, то хотя бы с точностью 0,5 км. Если эти облака расположены на одном уровне, то в строку “h” записывают высоту их основания, если же они расположены на разных уровнях, указывается высота h самых низких облаков. Если отсутствуют облака формы, записываемой в строку “СL“, а наблюдаются облака формы, записываемой в “См”, в строку h записывают высоту основания этих облаков. Если отдельные обрывки или клочки облаков, записываемых в строку “СL“ (в количестве менее 1 балла), расположены под более обширным слоем других облаков этих же форм или форм, записываемых в строку “См “ , в строку “h” записывают высоту основания этого слоя облаков, а не клочков или обрывков.

Благодаря экранирующему эффекту она препятствует как охлаждению поверхности Земли за счёт собственного теплового излучения, так и её нагреву излучением Солнца, тем самым уменьшая сезонные и суточные колебания температуры воздуха.

Характеристики облачности

Количество облаков

Количество облаков - степень покрытия неба облаками (в определённый момент или в среднем за некоторый промежуток времени), выраженная в 10-балльной шкале или в процентах покрытия. Современная 10-балльная шкала облачности принята на первой Морской Международной Метеорологической Конференции (Брюссель , г.).

При наблюдении на метеорологических станциях определяется общее количество облаков и количество облаков нижнего яруса; эти числа записываются в дневниках погоды через дробную черту, например 10/4 .

В авиационной метеорологии применяется 8-октантная шкала, которая проще при визуальном наблюдении: небо делится на 8 частей (то есть пополам, потом ещё пополам и ещё раз), облачность указывают в октантах (восьмых долях неба). В авиационных метеорологических сводках погоды (METAR , SPECI , TAF) количество облаков и высота нижней границы указывается по слоям (от самого нижнего к более верхним), при этом используются градации количества:

  • FEW - незначительные (рассеянные) - 1-2 октанта (1-3 балла);
  • SCT - разбросанные (отдельные) - 3-4 октанта (4-5 баллов);
  • BKN - значительные (разорванные) - 5-7 октантов (6-9 баллов);
  • OVC - сплошные - 8 октантов (10 баллов);
  • SKC - ясно - 0 баллов (0 октантов);
  • NSC - нет существенной облачности (любой количество облаков с высотой нижней границы 1500 м и выше, при отсутствии кучево-дождевых и мощно-кучевых облаков);
  • CLR - нет облаков ниже 3000 м (сокращение используется в сводках, формируемых автоматическими метеостанциями).

Формы облаков

Указываются наблюдаемые формы облаков (латинскими обозначениями) в соответствии с международной классификацией облаков.

Высота нижней границы облаков (ВНГО)

Определяется ВНГО нижнего яруса в метрах. На ряде метеостанций (особенно авиационных) этот параметр измеряется прибором (погрешность 10-15 %), на остальных - визуально, ориентировочно (при этом погрешность может достигать 50-100 %; визуальная ВНГО - самый ненадёжно определяемый элемент погоды). В зависимости от ВНГО можно разделить облачность на 3 яруса (Нижний, средний и верхний). К нижнему ярусу относится(примерно до высоты 2 км): слоистая(могут выпадать осадки в виде мороси), слоисто-дождевая(обложные осадки), слоисто-кучевая (в авиационной метеорологии также отмечаются разорвано-слоистая и разорвано-дождевая) облачность. Средний ярус (примерно от 2 км до 4-6 км): высоко-слоистая и высоко-кучевая. Верхний ярус: перистая, перисто-кучевая, перисто-слоистая облачность.

Высота верхней границы облаков

Может определяться по данным самолётного и радиолокационного зондирования атмосферы . На метеостанциях обычно не измеряется, но в авиационных прогнозах погоды по маршрутам и районам полётов указывается ожидаемая (прогнозируемая) высота верхней границы облаков.

См. также

Источники

Напишите отзыв о статье "Облачность"

Отрывок, характеризующий Облачность

Наконец вошел в комнату староста Дрон и, низко поклонившись княжне, остановился у притолоки.
Княжна Марья прошлась по комнате и остановилась против него.
– Дронушка, – сказала княжна Марья, видевшая в нем несомненного друга, того самого Дронушку, который из своей ежегодной поездки на ярмарку в Вязьму привозил ей всякий раз и с улыбкой подавал свой особенный пряник. – Дронушка, теперь, после нашего несчастия, – начала она и замолчала, не в силах говорить дальше.
– Все под богом ходим, – со вздохом сказал он. Они помолчали.
– Дронушка, Алпатыч куда то уехал, мне не к кому обратиться. Правду ли мне говорят, что мне и уехать нельзя?
– Отчего же тебе не ехать, ваше сиятельство, ехать можно, – сказал Дрон.
– Мне сказали, что опасно от неприятеля. Голубчик, я ничего не могу, ничего не понимаю, со мной никого нет. Я непременно хочу ехать ночью или завтра рано утром. – Дрон молчал. Он исподлобья взглянул на княжну Марью.
– Лошадей нет, – сказал он, – я и Яков Алпатычу говорил.
– Отчего же нет? – сказала княжна.
– Все от божьего наказания, – сказал Дрон. – Какие лошади были, под войска разобрали, а какие подохли, нынче год какой. Не то лошадей кормить, а как бы самим с голоду не помереть! И так по три дня не емши сидят. Нет ничего, разорили вконец.
Княжна Марья внимательно слушала то, что он говорил ей.
– Мужики разорены? У них хлеба нет? – спросила она.
– Голодной смертью помирают, – сказал Дрон, – не то что подводы…
– Да отчего же ты не сказал, Дронушка? Разве нельзя помочь? Я все сделаю, что могу… – Княжне Марье странно было думать, что теперь, в такую минуту, когда такое горе наполняло ее душу, могли быть люди богатые и бедные и что могли богатые не помочь бедным. Она смутно знала и слышала, что бывает господский хлеб и что его дают мужикам. Она знала тоже, что ни брат, ни отец ее не отказали бы в нужде мужикам; она только боялась ошибиться как нибудь в словах насчет этой раздачи мужикам хлеба, которым она хотела распорядиться. Она была рада тому, что ей представился предлог заботы, такой, для которой ей не совестно забыть свое горе. Она стала расспрашивать Дронушку подробности о нуждах мужиков и о том, что есть господского в Богучарове.
– Ведь у нас есть хлеб господский, братнин? – спросила она.
– Господский хлеб весь цел, – с гордостью сказал Дрон, – наш князь не приказывал продавать.
– Выдай его мужикам, выдай все, что им нужно: я тебе именем брата разрешаю, – сказала княжна Марья.
Дрон ничего не ответил и глубоко вздохнул.
– Ты раздай им этот хлеб, ежели его довольно будет для них. Все раздай. Я тебе приказываю именем брата, и скажи им: что, что наше, то и ихнее. Мы ничего не пожалеем для них. Так ты скажи.
Дрон пристально смотрел на княжну, в то время как она говорила.
– Уволь ты меня, матушка, ради бога, вели от меня ключи принять, – сказал он. – Служил двадцать три года, худого не делал; уволь, ради бога.
Княжна Марья не понимала, чего он хотел от нее и от чего он просил уволить себя. Она отвечала ему, что она никогда не сомневалась в его преданности и что она все готова сделать для него и для мужиков.

Через час после этого Дуняша пришла к княжне с известием, что пришел Дрон и все мужики, по приказанию княжны, собрались у амбара, желая переговорить с госпожою.
– Да я никогда не звала их, – сказала княжна Марья, – я только сказала Дронушке, чтобы раздать им хлеба.
– Только ради бога, княжна матушка, прикажите их прогнать и не ходите к ним. Все обман один, – говорила Дуняша, – а Яков Алпатыч приедут, и поедем… и вы не извольте…

Цель занятия: изучить классификацию облаков и освоить навыки определения типа облаков с использованием «Атласа облаков»

Общие положения

Процессы образования отдельного облака протекают под воздействием многих факторов. Облака и выпадающие из них осадки играют важнейшую роль в формировании различных типов погоды. Поэтому классификации облаков предоставляет специалистам возможность отслеживать пространственно-временную изменчивость облачных образований, что является мощным инструментом исследования и прогнозирования процессов, протекающих в атмосфере.

Впервые попытка разделения облаков по их внешнему виду на различные группы была предпринята в 1776 г. Ж. Б. Ламарком. Однако предложенная им классификация ввиду своего несовершенства не нашла широкого при-

менения. Первая вошедшая в науку классификация облаков была разработана английским метеорологом-любителем Л. Говардом в 1803 г. В 1887 г. ученые Гильдебрандсон в Швеции и Эберкромби в Англии, переработав классификацию Л. Говарда, предложили проект новой классификации, которая легла в основу всех последующих классификаций. Идея создания первого единого атласа облаков была поддержана на Международной конференции директоров метеорологических служб в Мюнхене в 1891 г. Созданный ею комитет подготовил и издал в 1896 г. первый Международный атлас облаков с 30 цветными литографиями. Первое русское издание этого Атласа вышло в свет в 1898 г. Дальнейшее развитие метеорологии и введение в практику синоптического анализа понятий об атмосферных фронтах и воздушных массах потребовало гораздо более подробного изучения облаков и их систем. Это предопределило необходимость существенной переработки применявшейся в то время классификации, следствием чего явилось издание в 1930 г. нового Международного атласа облаков. На русском языке этот Атлас был издан в 1933 г. в несколько сокращенном варианте.

Облака и выпадающие из них осадки принадлежат к числу важнейших метеорологических (атмосферных) явлений и играют определяющую роль в формировании погоды и климата, в распространении растительного и животного мира на Земле. Изменяя радиационный режим атмосферы и земной поверхности, облака оказывают заметное воздействие на температурно-влажностный режим тропосферы и приземного слоя воздуха, где протекает жизнь и деятельность человека.

Облаком называют видимую совокупность взвешенных в атмосфере и находящихся в процессе непрерывной эволюции капель и/или кристаллов, являющихся продуктами конденсации и/или сублимации водяного пара на высотах от нескольких десятков метров до нескольких километров.

Изменение фазового строения облака – соотношения капель и кристаллов по массе, числу частиц и другим параметрам в единице объема воздуха –происходит под влиянием температуры, влажности и вертикальных движений как внутри, так и вне облака. В свою очередь, выделение и поглощение тепла в результате фазовых переходов воды и наличия самих частиц в потоке воздуха оказывают обратное влияние на параметры облачной среды.

По фазовому строению облака делятся на три группы.

1. Водяные, состоящие только из капель радиусом 1-2 мкм и более. Капли могут существовать не только при положительных, но и при отрицательных температурах. Чисто капельное строение облака сохраняется, как правило, до температур порядка –10...–15 °С (иногда и ниже).

2. Смешанные, состоящие из смеси переохлажденных капель и ледяных кристаллов при температурах –20...–30 °С.

3. Ледяные, состоящие только из ледяных кристаллов при достаточно низких температурах (порядка –30...–40 °С).

Облачный покров днем уменьшает приток солнечной радиации к поверхности земли, а ночью заметно ослабляет ее излучение и, следовательно, охлаждение, весьма существенно уменьшает суточную амплитуду температуры воздуха и почвы, что влечет за собой соответствующее изменение и других метеорологических величин и атмосферных явлений.

Регулярные и достоверные наблюдения за формами облаков и их трансформацией способствуют своевременному обнаружению опасных и неблагоприятных гидрометеорологических явлений, сопутствующих тому или иному виду облаков.

В программу метеорологических наблюдений включено слежение за динамикой развития облаков и определение следующих характеристик облачности:

а) общее количество облаков,

б) количество облаков нижнего яруса,

в) форма облаков,

г) высота нижней границы облаков нижнего или среднего яруса (при отсутствии облаков нижнего яруса).

Результаты наблюдений за облачностью из метеорологических наблюдательных подразделений в реальном режиме времени по коду КН-01 (национальный вариант международного кода FM 12-IX SYNOP) регулярно передаются в местные прогностические органы (организации и подразделения УГМС) и Гидрометеорологический научно-исследовательский центр Российской Федерации (Гидрометцентр России) для синоптического анализа и составления прогнозов погоды различной заблаговременности. Кроме того, эти данные рассчитываются за различные временные интервалы и используются для климатических оценок и обобщений.

Количество облаков определяется как суммарная доля небосвода, закрытая облаками, от всей видимой поверхности небосвода и оценивается в баллах: 1 балл – это 0,1 доля (часть) всего небосвода, 6 баллов – 0,6 небосвода, 10 баллов – весь небосвод закрыт облаками.

Многолетние наблюдения за облаками показали, что они могут располагаться на различных высотах, как в тропосфере, так и в стратосфере и даже в мезосфере. Тропосферные облака обычно наблюдаются в виде отдельных, изолированных облачных масс или в виде сплошного облачного покрова. В зависимости от строения облака разделяются по внешнему виду на формы, виды и разновидности. Серебристые и перламутровые облака, в отличие от тропосферных облаков, наблюдаются довольно редко и характеризуются относительно небольшим разнообразием. Классификация тропосферных облаков по внешнему виду, используемая в настоящее время, получила название международной морфологической классификации.

Наряду с морфологической классификацией облаков используется и генетическая классификация, т. е. классификация по условиям (причинам) возникновения облаков. Кроме того, облака классифицируются по их микрофизическому строению, т. е. по агрегатному состоянию, виду и размерам облачных частиц, а также по их распределению внутри облака. В соответствии с генетической классификацией облака делятся на три группы: слоистообразные, волнистообразные и кучевообразные (конвективные).

Основные отличительные признаки при определении формы облаков – их внешний вид и структура. Облака могут быть расположены на разных высотах в виде отдельных изолированных масс или сплошного покрова, их строение может быть различным (однородным, волокнистым и др.), а нижняя поверхность – ровной или расчлененной (и даже изорванной). Кроме того, облака могут быть плотными и непрозрачными или тонкими - сквозь них просвечивает голубое небо, луна или солнце.

Высота облаков одной и той же формы непостоянна и может несколько меняться в зависимости от характера процесса и местных условий. В среднем высота облаков больше на юге, чем на севере, и больше летом, чем зимой. Над горными районами облака располагаются ниже, чем над равнинными.

Важной характеристикой облаков являются выпадающие из них осадки. Облака одних форм практически всегда дают осадки, других – либо совсем не дают осадков, либо осадки из них не достигают поверхности земли. Факт выпадения осадков, а также их вид и характер выпадения служат дополнительными признаками для определения форм, видов и разновидностей облаков. Из облаков определенных форм выпадают следующие виды осадков:

– ливневые – из кучево-дождевых облаков (Cb);

– обложные – из слоисто-дождевых (Ns) во все сезоны, из высокослоистых (As) – зимой и иногда слабые – из слоисто-кучевых (Sc);

– моросящие – из слоистых облаков (St).

В процессе развития и распада облака меняется его внешний вид, структура и оно может трансформироваться из одной формы в другую.

При определении количества и форм облаков учитываются только облака, видимые с поверхности земли. Если все небо или его часть закрыта облаками нижнего (среднего) яруса, а облаков среднего (верхнего) яруса не видно, то это не означает, что они отсутствуют. Они могут находиться выше нижележащих слоев облаков, но это не учитывается при наблюдениях за облачностью.

2 вариант 1. У подножия горы АД составляет 760 мм рт.ст. Каким будет давление на высоте 800 м: а) 840 мм рт. ст.; б) 760 мм рт. ст.; в) 700 мм рт. ст.;

г) 680 мм рт. ст. 2. Средние месячные температуры высчитываются: а) по сумме среднесуточных температур; б) делением суммы средних суточных температур на число суток в месяце; в) от разницы сумы температур предыдущего и последующего месяцев. 3. Установите соответствие: давление показатели а) 760 мм рт. ст.; 1) ниже нормы; б) 732 мм рт. ст.; 2) нормальное; в) 832 мм рт. ст. 3) выше нормы. 4. Причиной неравномерного распределения солнечного света по земной поверхности является: а) удаленность от Солнца; б) шарообразность Земли; в) мощный слой атмосферы. 5. Суточная амплитуда – это: а) общее количество показателей температуры в течение суток; б) разница между наибольшими и наименьшими показателями температуры воздуха в течение суток; в) ход температур в течение суток. 6. С помощью какого прибора измеряется атмосферное давление: а) гигрометра; б) барометра; в) линейки; г) термометра. 7. Солнце бывает в зените на экваторе: а) 22 декабря; б) 23 сентября; в) 23 октября; г) 1 сентября. 8. Слой атмосферы, где происходят все погодные явления: а) стратосфера; б) тропосфера; в) озоновый; г) мезосфера. 9. Слой атмосферы, не пропускающий ультрафиолетовые лучи: а) тропосфера; б) озоновый; в) стратосфера; г) мезосфера. 10. В какое время летом при ясной погоде наблюдается наименьшая температура воздуха: а) в полночь; б) перед восходом Солнца; в) после захода Солнца. 11. Высчитайте АД горы Эльбрус. (Высоту вершин найдите на карте, АД у подножия горы возьмите условно за 760 мм рт. ст.) 12. На высоте 3 км температура воздуха = - 15 ‘C, чему равна температура воздуха у поверхности Земли: а) + 5’C; б) +3’C; в) 0’C; г) -4’C.

1 вариант Установите соответствие: давление показатели а) 749 мм рт.ст.;

1) ниже нормы;

б) 760 мм рт.ст.; 2) нормальное;

в) 860 мм рт.ст.; 3) выше нормы.

Разность между наибольшим и наименьшим значениями температуры воздуха

называется:

а) давлением; б) движением воздуха; в) амплитудой; г) конденсацией.

3. Причиной неравномерного распределения солнечного тепла на поверхности Земли

является:

а) удаленность от солнца; б) шарообразность;

в) разная мощность слоя атмосферы;

4. Атмосферное давление зависит от:

а) силы ветра; б) направления ветра; в) разницы температуры воздуха;

г) особенностей рельефа.

Солнце бывает в зените на экваторе:

Озоновый слой расположен в:

а) тропосфере; б) стратосфере; в) мезосфере; г) экзосфере; д) термосфере.

Заполните пропуск: воздушной оболочкой земли является - _________________

8. Где наблюдается наименьшая мощность тропосферы:

а) на полюсах; б) в умеренных широтах; в) на экваторе.

Расположите этапы нагрева в правильной последовательности:

а) нагрев воздуха; б) солнечные лучи; в) нагрев земной поверхности.

В какое время летом, при ясной погоде, наблюдается наибольшая температура

воздуха: а) в полдень; б) до полудня; в) после полудня.

10. Заполните пропуск: при подъёме в горы атмосферное давление…, на каждые

10,5 м на ….мм рт.ст.

Высчитайте атмосферное давление г. Народная. (Высоту вершин найдите на

карте, АД у подножия гор возьмите условно за 760 мм рт.ст.)

В течение суток были зафиксированы следующие данные:

max t=+2’C, min t=-8’C; Определите амплитуду и среднесуточную температуру.

2 вариант

1. У подножия горы АД составляет 760 мм рт.ст. Каким будет давление на высоте 800 м:

а) 840 мм рт. ст.; б) 760 мм рт. ст.; в) 700 мм рт. ст.; г) 680 мм рт. ст.

2. Средние месячные температуры высчитываются:

а) по сумме среднесуточных температур;

б) делением суммы средних суточных температур на число суток в месяце;

в) от разницы сумы температур предыдущего и последующего месяцев.

3. Установите соответствие:

давление показатели

а) 760 мм рт. ст.; 1) ниже нормы;

б) 732 мм рт. ст.; 2) нормальное;

в) 832 мм рт. ст. 3) выше нормы.

4. Причиной неравномерного распределения солнечного света по земной поверхности

является: а) удаленность от Солнца; б) шарообразность Земли;

в) мощный слой атмосферы.

5. Суточная амплитуда – это:

а) общее количество показателей температуры в течение суток;

б) разница между наибольшими и наименьшими показателями температуры воздуха в

течение суток;

в) ход температур в течение суток.

6. С помощью какого прибора измеряется атмосферное давление:

а) гигрометра; б) барометра; в) линейки; г) термометра.

7. Солнце бывает в зените на экваторе:

2) что можно изобразить на плане местности?
а пришкольный участок
б океан
в Крымский полуостров
г материк
3) какие из перечисленных объектов обозначаются на плане местности линейными знаками?
а реки,озёра
б границы, пути сообщения
в населённые пункты, вершины гор
г полезные ископаемые, леса
4) в каких пределах измеряется географическая широта?
а 0-180"
б 0-90"
в 0-360"
г 90-180"

Понравилась статья? Поделиться с друзьями: