Линейные неравенства. Исчерпывающий гид (2019)

Уравнения с одной переменной. Равенство, содержащее переменную, называют уравнением с одной переменной, или уравнением с одним неизвестным. Например, уравнением с одной переменной является равенство 3(2х+7)=4х-1.

Корнем или решением уравнения называется значение переменной, при котором уравнение обращается в верное числовое равенство.

Решить уравнение - значит найти все его корни или доказать, что корней нет.

Уравнения называются равносильными, если все корни первого уравнения являются корнями второго уравнения и наоборот, все корни второго уравнения являются корнями первого уравнения или, если оба уравнения не имеют корней. Например, уравнения х-8=2 и х+10=20 равносильны, т.к. корень первого уравнения х=10 является корнем и второго уравнения, и оба уравнения имеют по одному корню.

Теоремы о равносильности уравнений. Первые три теоремы - «спокойные», они гарантируют равносильность преобразований без каких-либо дополнительных условий, их использование не причиняет решающему никаких неприятностей.

Теорема 1. Если какой-либо член уравнения перенести из одной части уравнения в другую с противоположным знаком, то получится уравнение, равносильное данному.

Теорема 2. Если обе части уравнения возвести в одну и ту же нечетную степень, то получится уравнение,равносильное данному.

Теорема 3. Показательное уравнение

Следующие три теоремы - «беспокойные», они работают лишь при определенных условиях, а значит, могут доставить некоторые неприятности при решении уравнений.

Областью определения уравнения f(х) = g(х) или областью допустимых значений (ОДЗ) переменной называют множество тех значений переменной х, при которых одновременно имеют смысл выражения f(х) и g(х).

Теорема 4. Если обе части уравнения f(х)=g(х) умножить на одно и то же выражение h(х), которое:

а) имеет смысл всюду в области определения (в области допустимых значений) уравнения f(х) = g(х);

б) нигде в этой области не обращается в 0 - то получится уравнение f(х) h(х) = g(х) h(х), равносильное данному.



Следствием теоремы 4 является еще одно «спокойное» утверждение: если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному.

Теорема 5. Если обе части уравнения f(х) = g(х) неотрицательны в области определения уравнения, то после возведения обеих его частей в одну и ту же четную степень п получится уравнение, равносильное данному: f(х)n = g (x)n .

Теорема 6. Если f(х) > 0 и g (х) > 0, то логарифмическое уравнение

Равносильно уравнению f(х) = g(x).

Линейные неравенства с одной переменной. Если переменной х придать какое-либо числовое значение, то мы получим числовое неравенство, выражающее либо истинное, либо ложное высказывание. Пусть, например, дано неравенство 5х-1>3х+2. При х=2 получим 5·2-1>3·2+2 – истинное высказывание (верное числовое высказывание); при х=0 получаем 5·0-1>3·0+2 – ложное высказывание. Всякое значение переменной, при котором данное неравенство с переменной обращается в верное числовое неравенство, называется решением неравенства. Решить неравенство с переменной – значит найти множество всех его решений.

Два неравенства с одной переменной х называются равносильными, если множества решений этих неравенств совпадают.

Основная идея решения неравенства состоит в следующем: мы заменяем данное неравенство другим, более простым, но равносильным данному; полученное неравенство снова заменяем более простым равносильным ему неравенством и т.д.

Такие замены осуществляются на основе следующих утверждений.

Теорема 1. Если какой-либо член неравенства с одной переменной перенести из одной части неравенства в другую с противоположным знаком, оставив при этом без изменения знак неравенства, то получится неравенство, равносильное данному.

Теорема 2. Если обе части неравенства с одной переменной умножить или разделить на одно и то же положительное число, оставив при этом без изменения знак неравенства, то получится неравенство, равносильное данному.

Теорема 3. Если обе части неравенства с одной переменной умножить или разделить на одно и то же отрицательное число, изменив при этом знак неравенства на противоположный, то получится неравенство, равносильное данному.

Линейным называется неравенство вида ax+b>0 (соответственно ax+b<0, ax+b³0, ax+b£0), где а и b – действительные числа, причем а¹0. Решение этих неравенств основано на трех теоремах равносильности изложенных выше.

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

х и областью определения Х . Тогда неравенство вида f (x ) > g (x ) или f (x ) < g (x ) называется неравенством с одной переменной . Множество Х называется областью его определения.

Значение переменной х из множества Х , при котором неравенство обращается в истинное числовое неравенство, называется его решением. Решить неравенство - это значит найти множество его решений.


В основе решения неравенств с одной переменной лежит понятие равносильности.


Два неравенства называются равносильными, если их множества решений равны.


Теоремы о равносильности неравенств и следствия из них аналогичны соответствующим теоремам о равносильности уравнений. При их доказательстве используются свойства истинных числовых неравенств.


Теорема 1. Пусть неравенство f (x ) > g (x ) задано на множестве Х и h (x ) - выражение, определенное на том же множестве. Тогда неравенства f (x ) > g (x ) и f (x ) + h (x ) > g (x ) + h (x ) равносильны на множестве Х .


Из этой теоремы вытекают следствия, которые часто используют при решении неравенств:


1) Если к обеим частям неравенства f (x ) > g (x ) прибавить одно и то же число d , то получим неравенство f (x ) + d > g (x ) + d , равносильное исходному.


2) Если какое-либо слагаемое ( или выражение с переменной) перенести из одной части неравенства в другую, поменяв знак слагаемого на противоположный, то получим неравенство, равносильное данному.


Теорема 2. Пусть неравенство f (x ) > g (x ) задано на множестве Х и h (x х из множества Х выражение h (x ) принимает положительные значения. Тогда неравенства f (x ) > g (x ) и f (x ) × h (x ) > g (x ) × h (x ) равносильны на множествеХ .


Из этой теоремы вытекает следствие: если обе части неравенства f (x ) > g (x ) умножить на одно и то же положительное число d , то получим неравенство f (x ) × d > g (x ) × d , равносильное данному.


Теорема 3. Пусть неравенство f (x ) > g (x ) задано на множестве Х и h (x ) - выражение, определенное на том же множестве, и для всех х из множества Х выражение h (x ) принимает отрицательные значения. Тогда неравенства f (x ) > g (x ) и f (x ) × h (x ) < g (x ) × h (x ) равносильны на множестве Х .


Из этой теоремы вытекает следствие: если обе части неравенства f (x ) > g (x ) умножить на одно и то же отрицательное число d и знак неравенства поменять на противоположный, то получим неравенство f (x ) × d < g (x ) × d , равносильное данному.


Задача. Является ли число х = 5 решением неравенства 2х + 7 > 10 - х, х Î R ? Найти множество решений этого неравенства.


Решение. Число х = 5 является решением неравенства
2х + 7 > 10 - х , так как 2×5 + 7 > 10 - 5 - истинное числовое неравенство. А множество его решений - это промежуток (1; ¥), который находят, выполняя преобразование неравенства 2х + 7 > 10 - х Þ 3х > 3 Þ х > 1.


Задача. Решить неравенство 5х - 5 < 2х + 16 и обосновать все преобразования, которые будут выполняться в процессе решения.


Решение.



















Преобразования



Обоснование преобразований



1. Перенесем выражение 2х в левую часть, а число -5 в правую, поменяв их знаки на противоположные: 5х - 2х < 16 + 5.



Воспользовались следствием 2 из теоремы 3, получили неравенство, равносильное исходному.



2. Приведем подобные члены в левой и правой частях неравенства: 3х < 21.



Выполнили тождественные преобразования выражений в левой и правой частях неравенства - они не нарушили равносильности неравенств: данного и исходного.



3. Разделим обе части неравенства на 3: х < 7.



Воспользовались следствием из теоремы 4, получили неравенство, равносильное исходному.

Романишина Дина Соломоновна, учитель математики гимназии №2 г. Хабаровска

1. Уравнения с одной переменной.

Равенство, содержащее переменную, называют уравнением с одной переменной, или уравнением с одним неизвестным. Например, уравнением с одной переменной является равенство 3(2х+7)=4х-1.

Корнем или решением уравнения называется значение переменной, при котором уравнение обращается в верное числовое равенство. Например, число 1 является решением уравнения 2х+5=8х-1. Уравнение х2+1=0 не имеет решения, т.к. левая часть уравнения всегда больше нуля. Уравнение (х+3)(х-4) =0 имеет два корня: х1= -3, х2=4.

Решить уравнение - значит найти все его корни или доказать, что корней нет.

Уравнения называются равносильными, если все корни первого уравнения являются корнями второго уравнения и наоборот, все корни второго уравнения являются корнями первого уравнения или, если оба уравнения не имеют корней. Например, уравнения х-8=2 и х+10=20 равносильны, т.к. корень первого уравнения х=10 является корнем и второго уравнения, и оба уравнения имеют по одному корню.

При решении уравнений используются следующие свойства:

Если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получите уравнение, равносильные данному.

Если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному.

Уравнение ах=b, где х – переменная, а и b – некоторые числа, называется линейным уравнением с одной переменной.

Если а¹0, то уравнение имеет единственное решение

.

Если а=0, b=0, то уравнению удовлетворяет любое значение х.

Если а=0, b¹0, то уравнение не имеет решений, т.к. 0х=b не выполняется ни при одном значении переменной.

Пример 1. Решить уравнение: -8(11-2х)+40=3(5х-4)

Раскроем скобки в обеих частях уравнения, перенесем все слагаемые с х в левую часть уравнения, а слагаемые, не содержащие х, в правую часть, получим:

16х-15х=88-40-12

Пример 2. Решить уравнения:

х3-2х2-98х+18=0;

Эти уравнения не являются линейными, но покажем, как можно решать такие уравнения.

3х2-5х=0; х(3х-5)=0. Произведение равно нулю, если один из множителей равен нулю, получаем х1=0; х2=

. .

Разложить на множители левую часть уравнения:

х2(х-2)-9(х-2)=(х-2)(х2-9)=(х-2)(х-3)(х-3), т.е. (х-2)(х-3)(х+3)=0. Отсюда видно, что решениями этого уравнения являются числа х1=2, х2=3, х3=-3.

с) Представим 7х, как 3х+4х, тогда имеем: х2+3х+4х+12=0, х(х+3)+4(х+3)=0, (х+3)(х+4)=0, отсюда х1=-3, х2=- 4.

Ответ: -3; - 4.

Пример 3. Решить уравнение: ½х+1ç+½х-1ç=3.

Напомним определение модуля числа:

Например: ½3½=3, ½0½=0, ½- 4½= 4.

В данном уравнении под знаком модуля стоят числа х-1 и х+1. Если х меньше, чем –1, то число х+1 отрицательное, тогда ½х+1½=-х-1. А если х>-1, то ½х+1½=х+1. При х=-1 ½х+1½=0.

Таким образом,

Аналогично

а) Рассмотрим данное уравнение½х+1½+½х-1½=3 при х£-1, оно равносильно уравнению -х-1-х+1=3, -2х=3, х=

, это число принадлежит множеству х£-1.

b) Пусть -1 < х £ 1, тогда данное уравнение равносильно уравнению х+1-х+1=3, 2¹3 уравнение не имеет решения на данном множестве.

с) Рассмотрим случай х>1.

х+1+х-1=3, 2х=3, х=

. Это число принадлежит множеству х>1.

Ответ: х1=-1,5; х2=1,5.

Пример 4. Решить уравнение:½х+2½+3½х½=2½х-1½.

Покажем краткую запись решения уравнения, раскрывая знак модуля «по промежуткам».

х £-2, -(х+2)-3х=-2(х-1), - 4х=4, х=-2Î(-¥; -2]

–2<х£0, х+2-3х=-2(х-1), 0=0, хÎ(-2; 0]

0<х£1, х+2+3х=-2(х-1), 6х=0, х=0Ï(0; 1]

х>1, х+2+3х=2(х-1), 2х=- 4, х=-2Ï(1; +¥)

Ответ: [-2; 0]

Пример 5. Решить уравнение: (а-1)(а+1)х=(а-1)(а+2), при всех значениях параметра а.

В этом уравнении на самом деле две переменных, но считают х–неизвестным, а а–параметром. Требуется решить уравнение относительно переменной х при любом значении параметра а.

Если а=1, то уравнение имеет вид 0×х=0, этому уравнению удовлетворяет любое число.

Если а=-1, то уравнение имеет вид 0×х=-2, этому уравнению не удовлетворяет ни одно число.

Если а¹1, а¹-1, тогда уравнение имеет единственное решение

.

Ответ: если а=1, то х – любое число;

если а=-1, то нет решений;

если а¹±1, то

.

2. Системы уравнений с двумя переменными.

Решением системы уравнений с двумя переменными называется пара значений переменных, обращающая каждое уравнение системы в верное равенство. Решить систему - значит найти все ее решения или доказать, что их нет. Две системы уравнений называются равносильными, если каждое решение первой системы является решением второй системы и каждое решение второй системы является решением первой системы или они обе не имеют решений.

При решении линейных систем используют метод подстановки и метод сложения.

Пример 1. Решить систему уравнений:

Для решения этой системы применим метод подстановки. Выразим из первого уравнения х и подставим это значение

во второе уравнение системы, получим ,

Ответ: (2; 3).

Пример 2. Решить систему уравнений:

Для решения этой системы применим метод сложения уравнений. 8х=16, х=2. Подставим значение х=2 в первое уравнение, получим 10-у=9, у=1.

Ответ: (2; 1).

Пример 3. Решить систему уравнений:

Эта система равносильна одному уравнению 2х+у=5, т.к. второе уравнение получается из первого умножением на 3. Следовательно, ей удовлетворяет любая пара чисел (х; 5-2х). Система имеет бесконечное множество решений.

Ответ: (х; 5-2х), х–любое.

Пример 4. Решить систему уравнений:

Умножим первое уравнение на –2 и сложим со вторым уравнением, получим 0×х+0×у=-6. Этому уравнению не удовлетворяет ни одна пара чисел. Следовательно, эта система не имеет решений.

Ответ: система не имеет решений.

Пример 5. Решить систему:

Из второго уравнения выражаем х=у+2а+1 и подставляем это значение х в первое уравнение системы, получаем

. При а=-2 уравнение не а=-2 имеет решения, если а¹-2, то .

Ответ: при a=-2система не имеет решения,

при а¹-2 система имеет решение

.

Пример 6. Решить систему уравнений:

Нам дана система из трех уравнений с тремя неизвестными. Применим метод Гаусса, который состоит в том, что равносильными преобразованиями приводят данную систему к треугольной форме. Прибавим к первому уравнению второе, умноженное на –2.

2х-2у-2z=-12

3х-3у-3z=-18

наконец прибавим к этому уравнению уравнение у-z=-1, умноженное на 2, получим - 4z=-12, z=3. Итак получаем систему уравнений:

х+у+z=6

z=3, которая равносильна данной.

Система такого вида называется треугольной.

Ответ: (1; 2; 3).

3. Решение задач с помощью уравнений и систем уравнений.

Покажем на примерах, как можно решать задачи с помощью уравнений и систем уравнений.

Пример 1. Сплав олова и меди массой 32 кг содержит 55% олова. Сколько чистого олова надо добавить в сплав, чтобы в новом сплаве щсодержалось 60% олова?

Решение. Пусть масса олова, добавленная к исходному сплаву, составляет х кг. Тогда сплав массой (32+х)кг будет содержать 60% олова и 40% меди. Исходный сплав содержал 55% олова и 45% меди, т.е. меди в нем было 32·0,45 кг. Так как масса меди в исходном и новом сплавах одна и та же, то получим уравнение 0,45·32=0,4(32+х).

Решив его, находим х=4, т.е. в сплав надо добавить 4 кг олова.

Пример 2. Задумано двузначное число, у которого цифра десятков на 2 меньше цифры единиц. Если это число разделить на сумму его цифр, то в частном получится 4 и в остатке 6. Какое число задумано?

Решение. Пусть цифра единиц есть х, тогда цифра десятков равна х-2 (х>2), задуманное число имеет вид 10(х-2)+х=11х-20. Сумма цифр числа х-2+х=2х-2. Следовательно, разделив 11х-20 на 2х-2, получим в частном 4 и в остатке 6. Составляем уравнение: 11х-20=4(2х-2)+6, т.к. делимое равно делителю, умноженному на частное, плюс остаток. Решив это уравнение, получим х=6. Итак, было задумано число 46.

Предложения 2х+7>10-х, х 2 +7х<2, (х+2)(2х-3)> 0 называют неравенствами с одной переменной.

В общем виде это понятие определяют так:

Определение .Пусть f(х) и q(х) - два выражения с переменной х и областью определения X. Тогда неравенство вида f(х) < q(х) или f(х) > q(х) называется неравенством с одной переменной. Мно­жество Х называется областью его определения.

Значение переменной х из множества X, при котором неравенство обращается в истинное числовое неравенство, называется его решением.Решить неравенство - это значит найти множество его решений.

Так, решением неравенства 2х +7>10-х , х Î R является число х=5, так как 2×5+7>10-5- истинное числовое неравенство. А множест­во его решений - это промежуток (1, ¥), который находят, выполняя преобразование неравенства: 2х+7>10-х Þ 3х> Þ х>1.

В основе решения неравенств с одной переменной лежит понятие равносильности.

Определение. Два неравенства называются равносильными, если их множества решений равны.

Например , неравенства 2х+7>10 и 2х>3 равносильны, так как их множества решений равны и представляют собой промежуток

Теоремы о равносильности неравенств и следствия из них аналогичны соответствующим теоремам о равносильности уравнений. При их доказательстве используется свойства истинных числовых неравенств.

Теорема 3 . Пусть неравенство f(х) > q(х) задано на множестве Х и h(х) - выражение, определенное на том же множестве. Тогда неравенст­ва f(х) > q(х) и f(х)+ h(х) > q(х)+ h(х) равносильны на множестве X.

Из этой теоремы вытекают следствия, которые часто используются при решении неравенств:

1) Если к обеим частям неравенства f(х) > q(х) прибавить одно и то же число d, то получим неравенство f(х)+ d > q(х)+ d, равносильное исходному.

2) Если какое-либо слагаемое (числовое выражение или выражение с переменной) перенести из одной части неравенства в другую, поменяв знак слагаемого на противоположный, то получим неравенство, равносильное данному.

Теорема 4. Пусть неравенство f(х) > q(х) задано на множестве Х и h(х) - выражение, определенное на том же множестве, и для всех х из множества Х выражение h(х) принимает положительные значения. Тогда неравенства f(х)× h(х) > q(х)× h(х) равносильны на множестве X.

Из этой теоремы вытекает следствие: если обе части неравенства f(х) > q(х)умножить на одно и то же положительное число d, то по­лучим неравенство f(х)× d > q(х)× d , равносильное данному.

Теорема 5 . Пусть неравенство f(х) > q(х) задано на множестве Х и h(х) - выражение, определенное на том же множестве, и для всех х их множества Х выражение h(х) принимает отрицательные значения. Тогда неравенства f(х) > q(х) b f(х)× h(х) < q(х)× h(х) равносильны на множестве X.


Из этой теоремы вытекает следствие: если обе части неравенства f(х) > q(х) умножить на одно и то же отрицательное число d и знак неравенства поменять на противоположный, то получим неравенство f(х)× d < q(х) × d, равносильное данному.

Решим неравенство 5х - 5 < 2х - 16,х Î R ,и обоснуем все преоб­разования, которые мы будем выполнять в процессе решения.

Понравилась статья? Поделиться с друзьями: