Колебания и волны. Виды колебаний в физике и их характеристика

Колебания – один из самых распространенных процессов в природе и технике.

Колеблются крылья насекомых и птиц в полете, высотные здания и высоковольтные провода под действием ветра, маятник заведенных часов и автомобиль на рессорах во время движения, уровень реки в течение года и температура человеческого тела при болезни.

Звук – это колебания плотности и давления воздуха, радиоволны – периодические изменения напряженностей электрического и магнитного полей, видимый свет – тоже электромагнитные колебания, только с несколько иными длиной волны и частотой.

Землетрясения – колебания почвы, приливы и отливы – изменение уровня морей и океанов, вызываемое притяжением Луны и достигающее в некоторых местностях 18 метров, биение пульса – периодические сокращения сердечной мышцы человека и т.д.

Смена бодрствования и сна, труда и отдыха, зимы и лета... Даже наше каждодневное хождение на работу и возвращение домой попадает под определение колебаний, которые трактуются как процессы, точно или приближенно повторяющиеся через равные промежутки времени.

Колебания бывают механические, электромагнитные, химические, термодинамические и различные другие. Несмотря на такое разнообразие, все они имеют между собой много общего и поэтому описываются одними и теми же уравнениями.

Свободными колебаниями называются колебания, происходящие благодаря начальному запасу энергии, приданному колеблющемуся телу.

Чтобы тело совершало свободные колебания, необходимо вывести его из состояния равновесия.

НАДО ЗНАТЬ

Специальный раздел физики – теория колебаний – занимается изучением закономерностей этих явлений. Знать их необходимо судо- и самолетостроителям, специалистам промышленности и транспорта, создателям радиотехнической и акустической аппаратуры.

Первыми учеными, изучавшими колебания, были Галилео Галилей (1564...1642) и Христиан Гюйгенс (1629...1692). (Полагают, что соотношение между длиной маятника и временем каждого качания открыл Галлилей. Однажды в церкви он наблюдал, как качалась огромная люстра, и засекал время по своему пульсу. Позже он открыл, что время, за которое происходит один взмах, зависит от длины маятника - время наполовину уменьшается, если укоротить маятник на три четверти.).
Гюйгенс изобрел первые часы с маятником (1657) и во втором издании своей монографии «Маятниковые часы» (1673) исследовал ряд проблем, связанных с движением маятника, в частности нашел центр качания физического маятника.

Большой вклад в изучение колебаний внесли многие ученые: английские – У. Томсон (лорд Кельвин) и Дж. Рэлей, русские – А.С. Попов и П.Н. Лебедев и другие


Красным цветом изображается вектор силы тяжести, синим - силы реакции, желтым - силы сопротивления, бордовым - равнодействующей силы. Для остановки маятника нажать кнопку "Стоп" в окне "Управление" или щелкнуть кнопкой мыши внутри главного окна программы. Для продолжения движения действия повторить.

Дальнейшие колебания нитяного маятника, выведенного из состояния равновесия, происходят
под действием результирующей силы, которая является суммой двух векторов: силы тяжести
и силы упругости.
Результирующая сила в данном случае называется возвращающей силой.


МАЯТНИК ФУКО В ПАРИЖСКОМ ПАНТЕОНЕ

Что доказал Жан Фуко?

Маятник Фуко служит для демонстрации вращения Земли вокруг своей оси. На длинном тросе подвешен тяжелый шар. Он качается взад-вперед над круглой площадкой с делениями.
Через какое-то время зрителям начинает казаться, что маятник качается уже над другими делениями. Кажется, что маятник повернулся, но это не так. Это повернулся вместе с Землей сам круг!

Для всех факт вращения Земли очевиден хотя бы потому, что день сменяет ночь, то есть за 24 часа совершается один полный оборот планеты вокруг своей оси. Вращение Земли можно доказать многими физическими опытами. Самым знаменитым из них был опыт, проведенный Жаном Бернаром Леоном Фуко в 1851 году в парижском Пантеоне в присутствии императора Наполеона. Под куполом здания физик подвесил металлический шар массой 28 кг на стальной проволоке длиной 67 м. Отличительной особенностью этого маятника было то, что он мог свободно качаться во всех направлениях. Под ним было сделано ограждение с радиусом 6 м, внутри которого насыпали песок, чьей поверхности касалось острие маятника. После того как маятник привели в движение, стало очевидно, что плоскость качания поворачивается относительно пола по часовой стрелке. Это следовало из того, что при каждом следующем качании острие маятника делало отметку на 3 мм дальше предыдущего. Это отклонение и объясняет то, что Земля совершает вращение вокруг своей оси.

В 1887 году принцип действия маятника был продемонстрирован и в и, в Исаакиевском соборе Петербурга. Хотя сегодня увидеть его нельзя, так как теперь он хранится в фонде музея-памятника. Сделано это было для того, чтобы восстановить первоначальную внутреннюю архитектуру собора.


СДЕЛАЙ МОДЕЛЬ МАЯТНИКА ФУКО САМ


Переверни табуретку вверх ножками и положи на концы её ножек (по диагонали) какую-нибудь рейку. А к середине её подвесь небольшой груз (например, гайку)ни нити. Заставь его качаться так, чтобы плоскость качания проходила между ножек табуретки. Теперь медленно поворачивай табуретку вокруг её вертикальной оси. Тебе станет заметно, что маятник качается уже в другом направлении. На самом деле он качается всё также, а изменение произошло из-за поворота самой табуретки, которая в этом опыте играет роль Земли.


КРУТИЛЬНЫЙ МАЯТНИК

Это маятник Максвелла, он позволяет выявить ряд интересных закономерностей движения твердого тела. К диску, насаженному на ось, привязаны нити. Если закрутить нить вокруг оси, диск поднимется. Теперь отпускаем маятник, и он начинает совершать периодическое движение: диск опускается, нить раскручивается. Дойдя до нижней точки, по инерции диск продолжает вращаться, но теперь уже закручивает нить и поднимается вверх.

Обычно крутильный маятник применяется в механических наручных часах. Колесико-балансир под действием пружины вращается то в одну, то в другую сторону. Его равномерные движения обеспечивают точность хода часов.


СДЕЛАЙ КРУТИЛЬНЫЙ МАЯТНИК САМ


Вырежьте из плотного картона небольшой круг диаметром 6 – 8 см. На одной стороне кружка нарисуйте открытую тетрадь, а на другой стороне – цифру «5». С двух сторон круга проделайте иголкой 4 отверстия и вставьте 2 прочные нити. Закрепите их, чтобы они не выскакивали, узелками. Далее стоит лишь закрутить круг на 20 – 30 оборотов и натянуть нити в стороны. В результате вращения вы увидите картинку « 5 в моей тетрадке».
Приятно?


Ртутное сердце

Небольшая капля – лужица ртути, поверхности которой в её центре касается железная проволока – игла, залита слабым водяным раствором соляной кислоты, в котором растворена соль двухромовокислого калия.. ртуть в растворе соляной кислоты получает электрический заряд и поверхностное натяжение на границе cоприкасающихся поверхностей понижается. При соприкосновении иглы с поверхностью ртути заряд уменьшается и, следовательно, меняется поверхностное натяжение. При этом капля обретает более сферическую форму. Макушка капли наползает на иглу, а затем под действием силы тяжести соскакивает с неё. Внешне явление производит впечатление вздрагивания ртути. Этот первый импульс дает толчок колебаниям, капля раскачивается и «сердце» начинает пульсировать. Ртутное «сердце» - не вечный двигатель! Со временем длина иглы уменьшается, и её вновь приходится устанавливать в соприкосновение с поверхностью ртути.

С одним из видов неравномерного движения - равноускоренным - вы уже знакомы.

Рассмотрим ещё один вид неравномерного движения - колебательное.

Колебательные движения широко распространены в окружающей нас жизни. Примерами колебаний могут служить: движение иглы швейной машины, качелей, маятника часов, вагона на рессорах и многих других тел.

На рисунке 52 изображены тела, которые могут совершать колебательные движения, если их вывести из положения равновесия (т. е. отклонить или сместить от линии ОО").

Рис. 52. Примеры тел, совершающих колебательные движения

В движении этих тел можно найти много различий. Например, шарик на нити (рис. 52, а) движется криволинейно, а цилиндр на резиновом шнуре (рис. 52, б) - прямолинейно; верхний конец линейки (рис. 52, в) колеблется с большим размахом, чем средняя точка струны (рис. 52, г). За одно и то же время одни тела могут совершать большее число колебаний, чем другие.

Но при всём разнообразии этих движений у них есть важная общая черта: через определённый промежуток времени движение любого тела повторяется.

Действительно, если шарик отвести от положения равновесия и отпустить, то он, пройдя через положение равновесия, отклонится в противоположную сторону, остановится, а затем вернётся к месту начала движения. За этим колебанием последует второе, третье и т. д., похожие на первое.

Повторяющимися будут и движения остальных тел, изображённых на рисунке 52.

Промежуток времени, через который движение повторяется, называется периодом колебаний. Поэтому говорят, что колебательное движение периодично.

В движении тел, изображённых на рисунке 52, кроме периодичности есть ещё одна общая черта: за промежуток времени, равный периоду колебаний, любое тело дважды проходит через положение равновесия (двигаясь в противоположных направлениях).

  • Повторяющиеся через равные промежутки времени движения, при которых тело многократно и в разных направлениях проходит положение равновесия, называются механическими колебаниями

Именно такие колебания и будут предметом нашего изучения.

На рисунке 53 изображён шарик с отверстием, надетый на гладкую стальную струну и прикреплённый к пружине (другой конец которой прикреплён к вертикальной стойке). Шарик может свободно скользить по струне, т. е. силы трения настолько малы, что не оказывают существенного влияния на его движение. Когда шарик находится в точке О (рис. 53, а), пружина не деформирована (не растянута и не сжата), поэтому никакие силы в горизонтальном направлении на него не действуют. Точка О - положение равновесия шарика.

Рис. 53. Динамика свободных колебаний горизонтального пружинного маятника

Переместим шарик в точку В (рис. 53, б). Пружина при этом растянется, и в ней возникнет сила упругости F упрB . Эта сила пропорциональна смещению (т. е. отклонению шарика от положения равновесия) и направлена противоположно ему. Значит, при смещении шарика вправо действующая на него сила направлена влево, к положению равновесия.

Если отпустить шарик, то под действием силы упругости он начнёт ускоренно перемещаться влево, к точке О. Направление силы упругости и вызванного ею ускорения будет совпадать с направлением скорости шарика, поэтому по мере приближения шарика к точке О его скорость будет всё время возрастать. При этом сила упругости с уменьшением деформации пружины будет уменьшаться (рис. 53, в).

Напомним, что любое тело обладает свойством сохранять свою скорость, если на него не действуют силы или если равнодействующая сил равна нулю. Поэтому, дойдя до положения равновесия (рис. 53, г), где сила упругости станет равна нулю, шарик не остановится, а будет продолжать двигаться влево.

При его движении от точки О к точке А пружина будет сжиматься. В ней снова возникнет сила упругости, которая и в этом случае будет направлена к положению равновесия (рис. 53, д, е). Поскольку сила упругости направлена против скорости движения шарика, то она тормозит его движение. В результате в точке А шарик остановится. Сила упругости, направленная к точке О, будет продолжать действовать, поэтому шарик вновь придёт в движение и на участке АО его скорость будет возрастать (рис. 53, е, ж, з).

Движение шарика от точки О к точке В снова приведёт к растяжению пружины, вследствие чего опять возникнет сила упругости, направленная к положению равновесия и замедляющая движение шарика до полной его остановки (рис. 53, з, и, к). Таким образом, шарик совершит одно полное колебание. При этом в каждой точке его траектории (кроме точки О) на него будет действовать сила упругости пружины, направленная к положению равновесия.

Под действием силы, возвращающей тело в положение равновесия, тело может совершать колебания как бы само по себе. Первоначально эта сила возникла благодаря тому, что мы совершили работу по растяжению пружины, сообщив ей некоторый запас энергии. За счёт этой энергии и происходили колебания.

  • Колебания, происходящие только благодаря начальному запасу энергии, называются свободными колебаниями

Свободно колеблющиеся тела всегда взаимодействуют с другими телами и вместе с ними образуют систему тел, которая получила название колебательной системы. В рассмотренном примере в колебательную систему входят шарик, пружина и вертикальная стойка, к которой прикреплён левый конец пружины. В результате взаимодействия этих тел и возникает сила, возвращающая шарик к положению равновесия.

На рисунке 54 изображена колебательная система, состоящая из шарика, нити, штатива и Земли (Земля на рисунке не показана). В данном случае шарик совершает свободные колебания под действием двух сил: силы тяжести и силы упругости нити. Их равнодействующая направлена к положению равновесия.

Рис. 54. Нитяной маятник

  • Системы тел, которые способны совершать свободные колебания, называются колебательными системами

Одно из основных общих свойств всех колебательных систем заключается в возникновении в них силы, возвращающей систему в положение устойчивого равновесия.

Колебательные системы - довольно широкое понятие, применимое к разнообразным явлениям.

Рассмотренные колебательные системы называются маятниками. Существует несколько типов маятников: нитяные (см. рис. 54), пружинные (см. рис. 53, 55) и т. д.

Рис. 55. Пружинный маятник

В общем случае

  • маятником называется твёрдое тело, совершающее под действием приложенных сил колебания около неподвижной точки или вокруг оси

Колебательное движение будем изучать на примере пружинного и нитяного маятников.

Вопросы

  1. Приведите примеры колебательных движений.
  2. Как вы понимаете утверждение о том, что колебательное движение периодично?
  3. Что называется механическими колебаниями?
  4. Пользуясь рисунком 53, объясните, почему по мере приближения шарика к точке О с любой стороны его скорость увеличивается, а по мере удаления от точки О в любую сторону скорость шарика уменьшается.
  5. Почему шарик не останавливается, дойдя до положения равновесия?
  6. Какие колебания называются свободными?
  7. Какие системы называются колебательными? Приведите примеры.

Упражнение 23


Существуют разные виды колебаний в физике, характеризующиеся определенными параметрами. Рассмотрим их основные отличия, классификацию по разным факторам.

Основные определения

Под колебанием подразумевают процесс, в котором через равные промежутки времени основные характеристики движения имеют одинаковые значения.

Периодическими называют такие колебания, при которых значения основных величин повторяются через одинаковые промежутки времени (период колебаний).

Разновидности колебательных процессов

Рассмотрим основные виды колебаний, существующие в фундаментальной физике.

Свободными называют колебания, которые возникают в системе, не подвергающейся внешним переменным воздействиям после начального толчка.

В качестве примера свободных колебаний является математический маятник.

Те виды механических колебаний, которые возникают в системе под действием внешней переменной силы.

Особенности классификации

По физической природе выделяют следующие виды колебательных движений:

  • механические;
  • тепловые;
  • электромагнитные;
  • смешанные.

По варианту взаимодействия с окружающей средой

Виды колебаний по взаимодействию с окружающей средой выделяют несколько групп.

Вынужденные колебания появляются в системе при действии внешнего периодического действия. В качестве примеров такого вида колебаний можно рассмотреть движение рук, листья на деревьях.

Для вынужденных гармонических колебаний возможно появление резонанса, при котором при равных значениях частоты внешнего воздействия и осциллятора при резком возрастании амплитуды.

Собственные это колебания в системе под воздействием внутренних сил после того, когда она будет выведена из равновесного состояния. Простейшим вариантом свободных колебаний является движение груза, который подвешен на нити, либо прикреплен к пружине.

Автоколебаниями называют виды, при которых у системы есть определенный запас потенциальной энергии, идущей на совершение колебаний. Отличительной чертой их является тот факт, что амплитуда характеризуется свойствами самой системы, а не первоначальными условиями.

Для случайных колебаний внешняя нагрузка имеет случайное значение.

Основные параметры колебательных движений

Все виды колебаний имеют определенные характеристики, о которых следует упомянуть отдельно.

Амплитудой называют максимальное отклонение от положения равновесия отклонение колеблющейся величины, измеряется она в метрах.

Период является время одного полного колебания, через который повторяются характеристики системы, вычисляется в секундах.

Частота определяется количеством колебаний за единицу времени, она обратно пропорциональна периоду колебаний.

Фаза колебаний характеризует состояние системы.

Характеристика гармонических колебаний

Такие виды колебаний происходят по закону косинуса или синуса. Фурье удалось установить, что всякое периодическое колебание можно представить в виде суммы гармонических изменений путем разложения определенной функции в

В качестве примера можно рассмотреть маятник, имеющий определенный период и циклическую частоту.

Чем характеризуются такие виды колебаний? Физика считает идеализированной системой, которая состоит из материальной точки, которая подвешена на невесомой нерастяжимой нити, колеблется под воздействием силы тяжести.

Такие виды колебаний обладают определенной величиной энергии, они распространены в природе и технике.

При продолжительном колебательном движении происходит изменение координаты его центра масс, а при переменном токе меняется значение тока и напряжения в цепи.

Выделяют разные виды гармонических колебаний по физической природе: электромагнитные, механические и др.

В качестве вынужденных колебаний выступает тряска транспортного средства, которое передвигается по неровной дороге.

Основные отличия между вынужденными и свободными колебаниями

Эти виды электромагнитных колебаний отличаются по физическим характеристикам. Наличие сопротивления среды и силы трения приводят к затуханию свободных колебаний. В случае вынужденных колебаний потери энергии компенсируются ее дополнительным поступлением от внешнего источника.

Период пружинного маятника связывает массу тела и жесткость пружины. В случае математического маятника он зависит от длины нити.

При известном периоде можно вычислить собственную частоту колебательной системы.

В технике и природе существуют колебания с разными значениями частот. К примеру, маятник, который колеблется в Исаакиевском соборе в Петербурге, имеет частоту 0,05 Гц, а у атомов она составляет несколько миллионов мегагерц.

Через некоторый промежуток времени наблюдается затухание свободных колебаний. Именно поэтому в реальной практике применяют вынужденные колебания. Они востребованы в разнообразных вибрационных машинах. Вибромолот является ударно-вибрационной машиной, которая предназначается для забивки в грунт труб, свай, иных металлических конструкций.

Электромагнитные колебания

Характеристика видов колебаний предполагает анализ основных физических параметров: заряда, напряжения, силы тока. В качестве элементарной системы, которая используется для наблюдения электромагнитных колебаний, является колебательный контур. Он образуется при последовательном соединении катушки и конденсатора.

При замыкании цепи, в ней возникают свободные электромагнитные колебания, связанные с периодическими изменениями электрического заряда на конденсаторе и тока в катушке.

Свободными они являются благодаря тому, что при их совершении нет внешнего воздействия, а используется только энергия, которая запасена в самом контуре.

При отсутствии внешнего воздействия, через определенный промежуток времени, наблюдается затухание электромагнитного колебания. Причиной подобного явления будет постепенная разрядка конденсатора, а также сопротивление, которым в реальности обладает катушка.

Именно поэтому в реальном контуре происходят затухающие колебания. Уменьшение заряда на конденсаторе приводит к снижению значения энергии в сравнении с ее первоначальным показателем. Постепенно она выделится в виде тепла на соединительных проводах и катушке, конденсатор полностью разрядится, а электромагнитное колебание завершится.

Значение колебаний в науке и технике

Любые движения, которые обладают определенной степенью повторяемости, являются колебаниями. Например, математический маятник характеризуется систематическим отклонением в обе стороны от первоначального вертикального положения.

Для пружинного маятника одно полное колебание соответствует его движению вверх-вниз от начального положения.

В электрическом контуре, который обладает емкостью и индуктивностью, наблюдается повторение заряда на пластинах конденсатора. В чем причина колебательных движений? Маятник функционирует благодаря тому, что сила тяжести заставляет его возвращаться в первоначальное положение. В случае пружиной модели подобную функцию осуществляет сила упругости пружины. Проходя положение равновесия, груз имеет определенную скорость, поэтому по инерции движется мимо среднего состояния.

Электрические колебания можно объяснить разностью потенциалов, существующей между обкладками заряженного конденсатора. Даже при его полной разрядке ток не исчезает, осуществляется перезарядка.

В современной технике применяются колебания, которые существенно различаются по своей природе, степени повторяемости, характеру, а также «механизму» появления.

Механические колебания совершают струны музыкальных инструментов, морские волны, маятник. Химические колебания, связанные с изменением концентрации реагирующих веществ, учитывают при проведении различных взаимодействий.

Электромагнитные колебания позволяют создавать различные технические приспособления, например, телефон, ультразвуковые медицинские приборы.

Колебания яркости цефеид представляют особый интерес в астрофизике, их изучением занимаются ученые из разных стран.

Заключение

Все виды колебаний тесно связаны с огромным количеством технических процессов и физических явлений. Велико их практическое значение в самолетостроении, строительстве судов, возведении жилых комплексов, электротехнике, радиоэлектронике, медицине, фундаментальной науке. Примером типичного колебательного процесса в физиологии выступает движение сердечной мышцы. Механические колебания встречаются в органической и неорганической химии, метеорологии, а также во многих иных естественнонаучных областях.

Первые исследования математического маятника были проведены в семнадцатом веке, а к концу девятнадцатого столетия ученым удалось установить природу электромагнитных колебаний. Русский ученый Александр Попов, которого считают «отцом» радиосвязи, проводил свои эксперименты именно на основе теории электромагнитных колебаний, результатах исследований Томсона, Гюйгенса, Рэлея. Ему удалось найти практическое применение электромагнитным колебаниям, использовать их для передачи радиосигнала на большое расстояние.

Академик П. Н. Лебедев на протяжении многих лет проводил эксперименты, связанные с получение электромагнитных колебаний высокой частоты с помощью переменны электрических полей. Благодаря многочисленным экспериментам, связанные с различными видами колебаний, ученым удалось найти области их оптимального использования в современной науке и технике.

Характеристика колебаний

Фаза определяет состояние системы, а именно координату, скорость, ускорение, энергию и др.

Циклическая частота характеризует скорость изменения фазы колебаний.

Начальное состояние колебательной системы характеризует начальная фаза

Амплитуда колебаний A - это наибольшее смещение из положения равновесия

Период T - это промежуток времени, в течение которого точка выполняет одно полное колебание.

Частота колебаний - это число полных колебаний в единицу времени t.

Частота, циклическая частота и период колебаний соотносятся как

Виды колебаний

Колебания, которые происходят в замкнутых системах называются свободными или собственными колебаниями. Колебания, которые происходят под действием внешних сил, называют вынужденными . Встречаются также автоколебания (вынуждаются автоматически).

Если рассматривать колебания согласно изменяющихся характеристик (амплитуда, частота, период и др.), то их можно разделить на гармонические , затухающие , нарастающие (а также пилообразные, прямоугольные, сложные).

При свободных колебаниях в реальных системах всегда происходят потери энергии. Механическая энергия расходуется, например, на совершение работы по преодолению сил сопротивления воздуха. Под влиянием силы трения происходит уменьшение амплитуды колебаний, и через некоторое время колебания прекращаются. Очевидно, что чем больше силы сопротивления движению, тем быстрее прекращаются колебания.

Вынужденные колебания. Резонанс

Вынужденные колебания являются незатухающими. Поэтому необходимо восполнять потери энергии за каждый период колебаний. Для этого необходимо воздействовать на колеблющееся тело периодически изменяющейся силой. Вынужденные колебания совершаются с частотой, равной частоте изменения внешней силы.

Вынужденные колебания

Амплитуда вынужденных механических колебаний достигает наибольшего значения в том случае, если частота вынуждающей силы совпадает с частотой колебательной системы. Это явление называется резонансом .

Например, если периодически дергать шнур в такт его собственным колебаниям, то мы заметим увеличение амплитуды его колебаний.


Если влажный палец двигать по краю бокала, то бокал будет издавать звенящие звуки. Хотя это и незаметно, палец движется прерывисто и передает стеклу энергию короткими порциями, заставляя бокал вибрировать

Стенки бокала также начинают вибрировать, если на него направить звуковую волну с частотой, равной его собственной. Если амплитуда станет очень большой, то бокал может даже разбиться. По причине резонанса при пении Ф.И.Шаляпина дрожали (резонировали) хрустальные подвески люстр. Возникновение резонанса можно проследить и в ванной комнате. Если вы будете негромко пропевать звуки разной частоты, то на одной из частот возникнет резонанс.

В музыкальных инструментах роль резонаторов выполняют части их корпусов. Человек также имеет собственный резонатор - это полость рта, усиливающая издаваемые звуки.

Явление резонанса необходимо учитывать на практике. В одних явлениях он может быть полезен, в других - вреден. Резонансные явления могут вызывать необратимые разрушения в различных механических системах, например, неправильно спроектированных мостах. Так, в 1905 году рухнул Египетский мост в Санкт-Петербурге, когда по нему проходил конный эскадрон, а в 1940 - разрушился Такомский мост в США.

Явление резонанса используется, когда с помощью небольшой силы необходимо получить большое увеличение амплитуды колебаний. Например, тяжелый язык большого колокола можно раскачать, действуя сравнительно небольшой силой с частотой, равной собственной частоте колебаний колокола.

Лабораторная работа №3

«Определение коэффицента упругости пружины с помощью пружинного маятника»

УДК 531.13(07)

Рассматриваются законы колебательного движения на примере пружинного маятника. Даны методические указания к выполнению лабораторной работы по определению коэффициента жёсткости пружины динамическим методами. Дан разбор типовых задач по теме «Гармонические колебания. Сложение гармонических колебаний.

Теоретическое введение

Колебательное движение является одним из наиболее распространённых движений в природе. С ним связаны звуковые явления, переменный ток, электромагнитные волны. Колебания совершают отдельные части самых разнообразных машин и приборов, атомы и молекулы в твёрдых телах, жидкостях и газах, сердечные мышцы у человека и животных и т. п.

Колебанием называют физический процесс, характеризующийся повторяемостью во времени физических величин, связанных с этим процессом. Движение маятника или качелей, сокращения сердечной мышцы, переменный ток - всё это примеры систем, совершающих колебания.

Колебания считают периодическими, если значения физических величин повторяются через равные промежутки времени, называемые периодом Т. Число полных колебаний, совершаемых системой за единицу времени, называют частотой ν. Очевидно, что Т = 1/ν. Частота измеряется в герцах (Гц). При частоте 1 герц система совершает 1 колебание в секунду.

Простейшим видом колебательного движения являются свободные гармонические колебания. Свободными , или собственными называются колебания, происходящие в системе после того, как она была выведена из положения равновесия внешними силами, которые в дальнейшем участия в движении системы не принимают. Наличие периодически меняющихся внешних сил вызывает в системе вынужденные колебания .

Гармоническими называют свободные колебания, происходящие под действием упругой силы при отсутствии трения. Согласно закону Гука, при малых деформациях сила упругости прямо пропорциональна смещению тела х от положения равновесия и направлена к положению равновесия: F упр. = - κх, где κ - коэффициент упругости, измеряемый в Н/м, а x - смещение тела из положения равновесия.

Силы, не упругие по своей природе, но аналогичные по виду зависимости от смещения, называют квазиупругими (лат. quasi - якобы). Такие силы также вызывают гармонические колебания. Например, квазиупругие силы действуют на электроны в колебательном контуре, вызывая гармонические электромагнитные колебания. Примером квазиупругой силы может также служить составляющая силы тяжести математического маятника при малых углах отклонения его от вертикали.

Уравнение гармонических колебаний . Пусть тело массой m прикреплено к концу пружины, масса которой мала по сравнению с массой тела. Колеблющееся тело называют осциллятором (лат. oscillum- колебание). Пусть осциллятор может свободно и без трения скользить вдоль горизонтальной направляющей, по которой направим ось координат ОХ (рис. 1). Начало координат поместим в точке, соответствующей равновесному положению тела (рис. 1, а). Приложим к телу горизонтальную силу F и сместим его из положения равновесия вправо в точку с координатой х . Растяжение пружины внешней силой вызывает появление в ней силу упругости F ynp. , направленной к положению равновесия (рис. 1, б). Если теперь убрать внешнюю силу F , то под действием силы упругости тело приобретает ускорение а , движется к положению равновесия, а сила упругости уменьшается, становясь равной нулю в положении равновесия. Достигнув положения равновесия, тело, однако, в нем не останавливается и движется влево за счёт своей кинетической энергии. Пружина вновь сжимается, возникает сила упругости, направленная вправо. Когда кинетическая энергия тела перейдет в потенциальную энергию сжатой пружины, груз остановится, затем начнет двигаться вправо, и процесс повторяется.

Таким образом, если при непериодическом движении каждую точку траектории тело проходит только один раз, двигаясь в одном направлении, то при колебательном движении за одно полное колебание в каждой точке траектории, кроме самых крайних, тело бывает дважды: один раз двигаясь в прямом направлении, другой раз -в обратном.

Напишем второй закон Ньютона для осциллятора: ma = F ynp. , где

F упр = –κx (1)

Знак «–» в формуле указывает на то, что смещение и сила имеют противоположные направления, иными словами, сила, действующая на прикрепленный к пружине груз, пропорциональна смещению его из положения равновесия и направлена всегда к положению равновесия. Коэффициент пропорциональности «κ» носит название коэффициента упругости. Численно он равен силе, вызывающей деформацию пружины, при которой её длина изменяется на единицу. Иногда его называют коэффициентом жёсткости .

Так как ускорение есть вторая производная от смещения тела, то это уравнение можно переписать в виде

, или
(2)

Уравнение (2) может быть записано в виде:

, (3)

где обе части уравнения разделены на массу m и введено обозначение:

(4)

Легко проверить подстановкой, что этому уравнению удовлетворяет решение:

х = А 0 cos (ω 0 t + φ 0) , (5)

где А 0 - амплитуда или максимальное смещение груза от положения равновесия, ω 0 - угловая или циклическая частота, которая может быть выражена через период Т собственных колебаний формулой
(см. ниже).

Величину φ = φ 0 + ω 0 t (6), стоящую под знаком косинуса и измеряемую в радианах, называют фазой колебания в момент времени t , а φ 0 - начальная фаза. Фаза представляет собой число, определяющее величину и направление смещения колеблющейся точки в данный момент времени. Из (6) видно, что

. (7)

Таким образом, величина ω 0 определяет быстроту изменения фазы и называется циклической частотой . С обычной чистотой её связывает формула

Если фаза изменяется на 2π радиан, то, как известно из тригонометрии, косинус принимает исходное значение, а следовательно, исходное значение принимает и смещение х . Но гак как время при этом изменяется на один период, то получается, что

ω 0 (t + T ) + φ 0 = (ω 0 t + φ 0) + 2π

Раскрывая скобки и сокращая подобные члены, получим ω 0 T = 2π или
. Но так как из (4)
, то получим:
. (9)

Таким образом, период колебания тела , подвешенного на пружине, как это следует из формулы (8), не зависит от амплитуды колебаний, но зависит от массы тела и от коэффициента упругости (или жесткости) пружины.

Дифференциальное уравнение гармонических колебаний:
,

Собственная круговая частота колебаний, определяемая природой и параметрами колеблющейся системы:


-для материальной точки массой m , колеблющейся под действием квазиупругой силы, характеризующейся коэффициентом упругости (жёсткости) k ;


-для математического маятника, имеющего длину l ;


-для электромагнитных колебаний в контуре с емкостью С и индуктивностью L .

ВАЖНОЕ ЗАМЕЧАНИЕ

Эти формулы верны при малых отклонениях от положения равновесия.

Скорость при гармоническом колебании:

.

Ускорение при гармоническом колебании:

Полная энергия гармонического колебания:

.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Задание 1

Определение зависимости периода собственных колебаний пружинного маятника от массы груза

1. Подвесьте к одной из пружин груз и выведите маятник из положения равновесия примерно на 1 - 2 см.

2. Предоставив грузу свободно колебаться, измерьте секундомером промежуток времени t , в течение которого маятник совершит n (n = 15 - 25) полных колебаний
. Найдите период колебания маятника, разделив измеренный вами промежуток времени на число колебаний. Для большей точности проведите измерения не менее 3 раз и вычислите среднее значение периода колебания.

Примечание : Следите за тем, чтобы боковые колебания груза отсутствовали, т. е. чтобы колебания маятника были строго вертикальными.

3. Повторите измерения с другими грузами. Результаты измерений запишите в таблицу.

4. Постройте зависимость периода колебаний маятника от массы груза. График будет более простым (прямая линия), если на горизонтальной оси откладывать значения маcсы грузов, а на вертикальной оси - значения квадрата периода.

Задание 2

Определение коэффициента упругости пружины динамическим методом

1. Подвесьте к одной из пружин груз массой 100 г., выведите его из положения равновесия на 1 - 2 см и, измерив время 15 - 20 полных колебаний, определите период колебания маятника с выбранным грузом по формуле
. Из формулы
вычислите коэффициент упругости пружины.

2. Проделайте аналогичные измерения с грузами от 150 г до 800 г (в зависимости от оборудования), определите для каждого случая коэффициент упругости и подсчитайте среднее значение коэффициента упругости пружины. Результаты измерений запишите в таблицу.

Задание 3 . По результатам лабораторной работы (задания 1 - 3):

– найдите значение циклической частоты маятника ω 0 .

– ответьте на вопрос: зависит ли амплитуда колебаний маятника от массы груза.

Возьмите на графике, полученном при выполнении задания 1 , произвольную точку и проведите из неё перпендикуляры до пересечения с осями Om и OT 2 . Определите для этой точки значения m и T 2 и по формуле
вычислите величину коэффициента упругости пружины.

Приложение

КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

ПО СЛОЖЕНИЮ ГАРМОНИЧЕСКИХ КОЛЕБАНИЙ

Амплитуда А результирующего колебания, полученного при сложении двух колебаний с одинаковыми частотами и амплитудами А 1 и А 2 , происходящих по одной прямой, определяется по формуле

где φ 0, 1 , φ 0, 2 - начальные фазы.

Начальная фаза φ 0 результирующего колебания может быть найдена по формуле

tg
.

Биения , возникающие при сложении двух колебаний x 1 =A cos2πν 1 t , происходящих по одной прямой с различными, но близкими по значению частотами ν 1 и ν 2 , описываются формулой

x = x 1 + x 2 + 2A cosπ (ν 1 – ν 2)t cosπ(ν 1 +ν 2)t .

Уравнение траектории точки, участвующей в двух взаимно перпендикулярных колебаниях одинаковой частоты с амплитудами А 1 и А 2 и начальными фазами φ 0, 1 и φ 0, 2:

Если начальные фазы φ 0, 1 и φ 0, 2 составляющих колебаний одинаковы, то уравнение траектории принимает вид
. Если же начальные фазы отличаются на π, то уравнение траектории имеет вид
. Это уравнения прямых линий, проходящих через начало координат, иными словами, в этих случаях точка движется по прямой. В остальных случаях движение происходит по эллипсу. При разности фаз
оси этого эллипса расположены по осямО X и О Y и уравнение траектории принимает вид
. Такие колебания называются эллиптическими. При A 1 =A 2 =A x 2 +y 2 =A 2 . Это уравнение окружности, и колебания называются круговыми. При других значениях частот и разностей фаз траектории колеблющейся точки образует причудливой формы кривые, называемые фигурами Лиссажу .

РАЗБОР НЕКОТОРЫХ ТИПОВЫХ ЗАДАЧ

ПО УКАЗАННОЙ ТЕМЕ

Задача 1. Из графика колебаний материальной точки следует, что модуль скорости в момент времени t = 1/3 с равен...


Период гармонического колебания, изображенного на рисунке, равен 2 секундам. Амплитуда этого колебания 18 см. Поэтому зависимость x (t ) можно записать в виде x(t) = 18sinπ t . Скорость равна производной функции х (t ) по времени v (t ) = 18π cosπ t . Подставив t = (1/3) с, получим v (1/3) = 9π (см/с).

Правильным является ответ: 9 π см/с.

Складываются два гармонических колебания одного направления с одинаковыми периодами и равными амплитудами A 0 . При разности
амплитуда результирующего колебания равна...


Решение существенно упрощается, если использовать векторный метод определения амплитуды и фазы результирующего колебания. Для этого одно из складываемых колебаний представим в виде горизонтального вектора с амплитудой А 1 . Из конца этого вектора построим второй вектор с амплитудой А 2 так, чтобы он образовал угол
с первым вектором. Тогда длина вектора, проведенного из начала первого вектора в конец последнего, будет равна амплитуде результирующего колебания, а угол, образуемый результирующим вектором с первым вектором, будет определять разность их фаз. Векторная диаграмма, соответствующая условию задания, приведена на рисунке. Отсюда сразу видно, что амплитуда результирующего колебания в
раз больше амплитуды каждого из складываемых колебаний.

Правильным является ответ:
.

ТочкаМ одновременно колеблется по гармоническому закону вдоль осей координат ОХ и OY с различными амплитудами, но одинаковыми частотами. При разности фаз π/2 траектория точки М имеет вид:

При заданной в условии разности фаз уравнением траектории является уравнение эллипса, приведенного к координатным осям, причем полуоси эллипса равны соответствующим амплитудам колебаний (см. теоретические сведения).

Правильным является ответ: 1.

Два одинаково направленных гармонических колебания одного периода с амплитудами A 1 =10 см и А 2 =6 см складываются в одно колебание с амплитудой А рез =14 см. Разность фаз
складываемых колебаний равна...

В этом случае удобно воспользоваться формулой . Подставив в нее данные из условия задания, получим:
.

Этому значению косинуса соответствует
.

Правильным является ответ: .

Контрольные вопросы

1. Какие колебания называются гармоническими? 2. Какой вид имеет график незатухающих гармонических колебаний? 3. Какими величинами характеризуется гармонический колебательный процесс? 4. Приведите примеры колебательных движений из биологии и ветеринарии. 5. Напишите уравнение гармонических колебаний. 6. Как получить выражение для периода колебательного движения пружинного маятника?

ЛИТЕРАТУРА

    Грабовский Р. И. Курс физики. - М.: Высшая школа, 2008, ч. I, § 27-30.

    Основы физики и биофизики. Журавлёв А. И. , Белановский А. С., Новиков В. Э., Олешкевич А. А. и др. - М., Мир, 2008, гл. 2.

    Трофимова Т. И. Курс физики: Учебник для студ. вузов. - М.: МГАВМиБ, 2008. - гл. 18.

    Трофимова Т. И. Физика в таблицах и формулах: Учеб. пособие для студентов вузов. - 2-е изд., испр. - М.: Дрофа, 2004. - 432 с.

Понравилась статья? Поделиться с друзьями: