Применение алюминия в природе. Конспект урока по химии Алюминий

Алюминий - наиболее распространенный металл на Земле, а по распространенности всех элементов в земной коре он занимает третье место. На его долю приходится 8% состава земной коры.

Из-за большого сродства к кислороду алюминий не встречается в природе в виде свободного металла. Он широко распространен в форме гидратированных силикатов алюминия в таких породах, как глины, слюды и полевые шпаты. Кроме того, алюминий обнаруживается в виде бокситной руды. Боксит содержит гидратированный оксид алюминия , где принимает значения от 1 до 3. Боксит образуется в результате выветривания глин. В этом процессе происходит выщелачивание силикатов и образуется богатый глиноземом остаток.

Боксит. Боксит получил свое название от города Ле Бокс на юге Франции, где в 1821 г. был обнаружен образец красной глинистой породы. Сначала полагали, что боксит представляет собой новый минерал. Однако последующие анализы показали, что минералогический состав этой руды, ее физические свойства и характер залегания чрезвычайно разнообразны. Термин боксшппая руда применяется к любым месторождениям, в которых содержится не менее 45% одной или нескольких разновидностей гидратированного оксида алюминия, но не более 20% оксида железа(III) и 5% кремнезема. Наиболее важными минералами в бокситных месторождениях являются гиббсит, диаспор и бёмит.

Бокситная руда в настоящее время повсеместно является главным сырьем для получения алюминия. Ежегодно в мире добывают от 80 до 90 млн. т бокситной руды. Почти 30% этого количества добывают в Австралии и еще 15% на Ямайке. Для получения 1 т алюминия расходуется приблизительно 5 т бокситной руды. При

нынешнем уровне мирового производства алюминия разведанных на Земле запасов боксита достаточно, чтобы обеспечивать потребности в алюминии еще несколько сотен лет. Получение алюминия из бокситной руды осуществляется в две стадии.

Стадия 1: Процесс Байера для очистки бокситной руды и получения глинозема.

Неочищенная бокситная руда содержит оксид железа(III), кремнезем и другие примеси. Она может считаться экономически выгодным сырьем для получения алюминия, если содержит не меньше 45% алюминия и не больше 5% кремнезема.

В процессе Байера бокситную руду сначала размалывают, а затем смешивают с раствором гидроксида натрия (едкого натра). Эту смесь нагревают в автоклаве под высоким давлением, в результате чего образуется натрия (см. уравнение 1 на с. 186). Оксид железа удаляют из раствора после того, как он осядет и образует «красный шлам». Затем раствор профильтровывают и перекачивают в осадительный бак, где его затравливают кристалликами гидроксида алюминия. После затравливания водный раствор натрия разлагается с образованием гидроксида алюминия, который вырастает в большие кристаллы на затравочных кристалликах. Этот процесс протекает по уравнению затравка

Гидроксид натрия, образующийся в этом процессе, возвращают в новый цикл процесса. Кристаллы гидроксида алюминия отфильтровывают, промывают водой, а

Рис. 15.3. Электролизер для получения алюминия из бокситной руды.

затем прокаливают во вращающейся печи при температуре порядка 1000°С. В результате образуется глинозем:

Глинозем имеет температуру плавления 2045 °С. Поэтому использование чистого расплавленного глинозема в качестве электролита для получения алюминия трудно осуществимо практически и не оправдано с экономической точки зрения. Для снижения температуры плавления используется эвтектическая смесь (см. разд. 6.2), состоящая из 5%-ного раствора глинозема в расплавленном криолите. Эта смесь имеет температуру плавления 970 °С. Криолит представляет собой алюминиевую руду, которая имеет формулу Природный криолит добывают в Гренландии, однако большие количества этого вещества получают синтетически.

Стадия 2: Электролитическое восстановление глинозема. Электролиз проводится в электролизере Холла-Хирауля (Hall-Heroult) (рис. 15.3). Жидкий алюминий образуется на графитовом катоде и по мере накопления сливается из нижней части электролизера. Его чистота превышает 99%. Расплавленный криолит не расходуется в процессе электролиза, и поэтому в него по мере необходимости добавляют новые порции глинозема. На графитовом аноде образуется кислород, что приводит к постепенному сгоранию анода с образованием оксида углерода и небольшого количества диоксида углерода. Каждые 20 дней анод приходится заменять новым.

Электродные реакции описываются уравнениями:

В этом процессе потребляется большое количество электрической энергии. В нем используется постоянный ток силой более 100000 А при напряжении порядка 5 В. Для получения 1 т алюминия расходуется 13-17 тысяч киловатт-часов энергии. Такой процесс экономически оправдан только при наличии дешевой электроэнергии, например от гидроэлектростанции. Другой проблемой, которая возникает в связи с его проведением, является загрязнение фтором окружающей среды вблизи алюминиевых заводов из-за потерь криолита.

ОПРЕДЕЛЕНИЕ

Алюминий – химический элемент 3 периода IIIA группы. Порядковый номер – 13. Металл. Алюминий относится к элементам p -семейства. Символ – Al.

Атомная масса – 27 а.е.м. Электронная конфигурация внешнего энергетического уровня – 3s 2 3p 1 . В своих соединениях алюминий проявляет степень окисления равную «+3».

Химические свойства алюминия

Алюминий в реакциях проявляет восстановительные свойства. Поскольку при пребывании на воздухе на его поверхности образуется оксидная пленка, устойчив к взаимодействию с другими веществами. Например, алюминий пассивируется в воде, концентрированной азотной кислоте и растворе дихромата калия. Однако, после удаления с его поверхности оксидной пленки способен взаимодействовать с простыми веществами. Большинство реакций протекает при нагревании:

2Al powder +3/2O 2 = Al 2 O 3 ;

2Al + 3F 2 = 2AlF 3 (t);

2Al powder + 3Hal 2 = 2AlHal 3 (t = 25C);

2Al + N 2 = 2AlN (t);

2Al +3S = Al 2 S 3 (t);

4Al + 3C graphite = Al 4 C 3 (t);

4Al + P 4 = 4AlP (t, в атмосфере Н 2).

Также, алюминий после удаления с его поверхности оксидной пленки способен взаимодействовать с водой с образованием гидроксида:

2Al + 6H 2 O = 2Al(OH) 3 +3H 2 .

Алюминий проявляет амфотерные свойства, поэтому он способен растворяться в разбавленных растворах кислот и щелочах:

2Al + 3H 2 SO 4 (dilute) = Al 2 (SO 4) 3 + 3H 2 ;

2Al + 6HCl dilute = 2AlCl 3 + 3 H 2 ;

8Al + 30HNO 3 (dilute) = 8Al(NO 3) 3 + 3N 2 O + 15H 2 O;

2Al +2NaOH +3H 2 O = 2Na + 3H 2 ;

2Al + 2(NaOH×H 2 O) = 2NaAlO 2 + 3 H 2 .

Алюмиотермия – способ получения металлов из их оксидов, основанный на восстановлении этих металлов алюминием:

8Al + 3Fe 3 O 4 = 4Al 2 O 3 + 9Fe;

2Al + Cr 2 O 3 = Al 2 O 3 +2Cr.

Физические свойства алюминия

Алюминий представляет собой серебристо-белого цвета. Основные физические свойства алюминия – легкость, высокая тепло- и электропроводность. В свободном состоянии при пребывании на воздухе алюминий покрывается прочной пленкой оксида Al 2 O 3 , которая делает его устойчивым к действию концентрированных кислот. Температура плавления – 660,37С, кипения – 2500С.

Получение и применение алюминия

Алюминий получают электролизом расплава оксида этого элемента:

2Al 2 O 3 = 4Al + 3O 2

Однако из-за небольшого выхода продукта, чаще используют способ получения алюминия электролизом смеси Na 3 и Al 2 O 3 . Реакция протекает при нагревании до 960С и в присутствии катализаторов – фторидов (AlF 3 , CaF 2 и др.), при этом на выделение алюминия происходит на катоде, а на аноде выделяется кислород.

Алюминий нашел широкое применение в промышленности, так, сплавы на основе алюминия – основные конструкционные материалы в самолето- и судостроении.

Примеры решения задач

ПРИМЕР 1

Задание при взаимодействии алюминия с серной кислотой образовался сульфат алюминия массой 3,42 г. Определите массу и количество вещества алюминия, вступившего в реакцию.
Решение Запишем уравнение реакции:

2Al + 3H 2 SO 4 = Al 2 (SO 4) 3 + 3H 2 .

Молярные массы алюминия и сульфата алюминия, рассчитанные с использованием таблицы химических элементов Д.И. Менделеева – 27 и 342 г/моль, соответственно. Тогда, количество вещества образовавшегося сульфата алюминия будет равно:

n(Al 2 (SO 4) 3) = m(Al 2 (SO 4) 3) / M(Al 2 (SO 4) 3);

n(Al 2 (SO 4) 3) = 3,42 / 342 = 0,01 моль.

Согласно уравнению реакции n(Al 2 (SO 4) 3): n(Al) = 1:2, следовательно n(Al) = 2×n(Al 2 (SO 4) 3) = 0,02 моль. Тогда, масса алюминия будет равна:

m(Al) = n(Al)×M(Al);

m(Al) = 0,02×27 = 0,54 г.

Ответ Количество вещества алюминия – 0,02 моль; масса алюминия – 0,54 г.

Алюминий был выделен в ходе эксперимента по воздействию калиевых соединений ртути на природные бокситы. Учитывая всю сложность процесса, алюминий на протяжении нескольких десятилетий оставался самым дорогим металлом на земле.

Научные изыскания привели к открытию относительно дешевого способа получения алюминия по методу поэтапного электролиза с дальнейшей очисткой и осаждением металла. Повсеместное распространение этого метода позволило получать чистый алюминий в промышленных масштабах. Текущие показатели среднесуточного производства этого металла превышают 130 тысяч тонн.

Основные характеристики

Легкий парамагнитный металл серебристого цвета с мутноватой поверхностью. Хорошо поддается формовке и ковке, практически не подвержен коррозии. На открытом воздухе покрывается естественным защитных слоем из окислов, что предотвращает дальнейшие реакции между алюминием и атмосферным кислородом. Имеет относительно малую прочность на излом, быстро накапливает усталость, что ограничивает его использование в чистом виде.

Хорошо проводит электричество и тепловую энергию, уступая по этим показателям лишь меди и металлам платиновой подгруппы. Относительная дешевизна алюминия обеспечили ему широкое распространение в качестве конструкционного металла и универсального диэлектрика.


Физические свойства

Металл пластичный, со сравнительно низкой плотностью при высоких конструкционных показателях (высокая тепло- и электропроводимость, устойчивость к коррозионному воздействию). Основные физические свойства алюминия можно выделить в виде следующего списка:

  • Плотность — 2,7 г/см 3 ;
  • Температура плавления — 659 0 С;
  • Коэффициент пластичности — 50%;
  • Коэффициент электропроводности — 32*10 6 См/м;
  • Средний показатель теплопроводности — 204 Вт/м;

В отличие от таких металлов, как свинец или медь, при нагревании до отметки в 600 градусов Цельсия алюминий становится хрупким, разбивается на отдельные гранулы или зерна. Отлично проводит тепло, легко нагревается и также легко остывает без каких-либо последствий для кристаллической решетки металла.

Алюминий — довольно активный метал, легко сплавляется с другими металлами и неметаллами, образуя равномерную кристаллическую решетку с высокими конструктивными качествами.

Химические свойства

Химически активный амфотерный элемент:

  • Реагирует с хлором, бромом и другими галогенами, образуя соответствующие соли;
  • Вступает в реакции с неметаллами;
  • Растворяется в сильных кислотах;
  • Обладает свойством восстанавливать другие металлы, что используется при очистке железа и хрома;

Все вышеперечисленные реакции требуют наличия дополнительных катализаторов и проводятся при нагревании.

Относительное содержание алюминия определено в пределах от 7% до 8% (в среднем — 7,5% по массе). Количественная оценка включает в себя все минералы и соли алюминия. Металл входит в состав огромного количества природных соединений. Основным промышленным сырьем для получения чистого алюминия являются бокситы, алюмосиликаты и другие природные минералы, содержащие оксид алюминия.

Сфера применения

Сочетание низкой стоимости, устойчивости к коррозии и высокой реактивной способности вывели алюминий в лидеры среди всех металлов, используемых современной промышленностью. Алюминий — самая распространенная легирующая добавка для изготовления сплавов на основе меди, магния, титана и никеля. Повышает показатели упругости и прочности, придает сплаву антикоррозионные свойства.

Алюминий несильно уступает меди по электропроводности, при этом имеет в 4-5 раз меньшую стоимость и значительно более легкий процесс очистки, что объясняет его распространение для изготовления проводниковых элементов, конденсаторов и электронных компонентов.

Также алюминий используется в качестве химического катализатора (в составе комбинированных соединений), при производстве зеркал и взрывчатых веществ. Нейтральность алюминия позволяет использовать его в пищевой промышленности для изготовления упаковочных материалов и посуды.

По распространенности в земной коре алюминий занимает первое место среди металлов и третье место среди всех элементов (после кислорода и кремния), на его долю приходится около 8,8% массы земной коры. Алюминия вдвое больше, чем железа, и в 350 раз больше, чем меди, цинка, хрома, олова и свинца вместе взятых! Алюминий входит в огромное число минералов, главным образом, алюмосиликатов, и горных пород. Соединения алюминия содержат граниты, базальты, глины, полевые шпаты и др. Но вот парадокс: при огромном числе минералов и пород, содержащих алюминий, месторождения бокситов - главного сырья при промышленном получении алюминия, довольно редки. В России месторождения бокситов имеются в Сибири и на Урале. Промышленное значение имеют также алуниты и нефелины.

Важнейший минерал алюминия – боксит, смесь основного оксида AlO(OH) и гидроксида Al(OH) 3 . Крупнейшие месторождения боксита находятся в Австралии, Бразилии, Гвинее и на Ямайке; промышленная добыча ведется и в других странах. Богаты алюминием также алунит (квасцовый камень)(Na,K) 2 SO 4 ·Al 2 (SO 4) 3 ·4Al(OH) 3 , нефелин (Na,K) 2 O·Al 2 O 3 ·2SiO 2 . Всего же известно более 250 минералов, в состав которых входит алюминий; большинство из них – алюмосиликаты, из которых и образована в основном земная кора. При их выветривании образуется глина, основу которой составляет минерал каолинит Al 2 O 3 ·2SiO 2 ·2H 2 O. Примеси железа обычно окрашивают глину в бурый цвет, но встречаются и белая глина – каолин, которую применяют для изготовления фарфоровых и фаянсовых изделий.

Изредка встречается исключительно твердый (уступает лишь алмазу) минерал корунд – кристаллический оксид Al 2 O 3 , часто окрашенный примесями в разные цвета. Его синяя разновидность (примесь титана и железа) называется сапфиром, красная (примесь хрома) – рубином. Разные примеси могут окрашивать так называемый благородный корунд также в зеленый, желтый, оранжевый, фиолетовый и другие цвета и оттенки.

В качестве микроэлемента алюминий присутствует в тканях растений и животных. Существуют организмы-концентраторы, накапливающие алюминий в своих органах, - некоторые плауны, моллюски.

Около 1807 г. Дэви, пытавшийся осуществить электролиз глинозема, дал название предполагаемому в нем металлу алюмиум (Alumium). Впервые алюминий был получен Гансом Эрстедом в 1825 году действием амальгамы калия на хлорид алюминия с последующей отгонкой ртути. В 1827 г. Велер выделил металлический алюминий более эффективным способом - нагреванием безводного хлористого алюминия с металлическим калием.

Нахождение в природе, получение:

По распространенности в природе занимает 1-е среди металлов и 3-е место среди элементов, уступая только кислороду и кремнию. Содержание алюминия в земной коре по данным различных исследователей составляет от 7,45% до 8,14% от массы земной коры. В природе алюминий встречается только в соединениях (минералах).
Корунд: Al 2 O 3 - относится к классу простых оксидов, и иногда образует прозрачные драгоценные кристаллы - сапфира, и, с добавлением хрома, рубина. Накапливается в россыпях.
Бокситы: Al 2 O 3 *nH 2 O - осадочные алюминиевые руды. Содержат вредную примесь - SiO 2 . Бокситы служат важным сырьем для получения алюминия, а также красок, абразивов.
Каолинит: Al 2 O 3 *2SiO 2 *2H 2 O - минерал подкласса слоистых силикатов, главная составная часть белой, огнеупорной, и фарфоровой глины.
Современный метод получения алюминия был разработан независимо американцем Чарльзом Холлом и французом Полем Эру. Он заключается в растворении оксида алюминия Al 2 O 3 в расплаве криолита Na 3 AlF 3 с последующим электролизом с использованием графитовых электродов. Такой метод получения требует больших затрат электроэнергии, и поэтому оказался востребован только в XX веке. Для производства 1 т алюминия требуется 1,9 т глинозёма и 18 тыс. кВт·ч электроэнергии.

Физические свойства:

Металл серебристо-белого цвета, легкий, плотность 2,7 г/см 3 , температура плавления 660°C, температура кипения 2500°C. Высокая пластичность, прокатывается в тонкий лист и даже фольгу. Алюминий обладает высокой электропроводностью и теплопроводностью, обладает высокой светоотражательной способностью. Алюминий образует сплавы почти со всеми металлами.

Химические свойства:

При нормальных условиях алюминий покрыт тонкой и прочной оксидной плёнкой и потому не реагирует с классическими окислителями: с H 2 O (t°);O 2 , HNO 3 (без нагревания). Благодаря этому алюминий практически не подвержен коррозии и потому широко востребован современной индустрией. Однако, при разрушении оксидной плёнки (например, при контакте с растворами солей аммония NH 4 + , горячими щелочами или в результате амальгамирования), алюминий выступает как активный металл-восстановитель. Легко реагирует с простыми веществами: кислородом, галогенами: 2Al + 3Br 2 = 2AlBr 3
С другими неметаллами алюминий реагирует при нагревании:
2Al + 3S = Al 2 S 3 2Al + N 2 = 2AlN
Алюминий способен только растворять водород, но не вступает с ним в реакцию.
Со сложными веществами: алюминий реагирует со щелочами (с образованием тетрагидроксоалюминатов):
2Al + 2NaOH + 6H 2 O = 2Na + 3H 2
Легко растворяется в разбавленной и концентрированной серной кислотах:
2Al + 3H 2 SO 4 (разб) = Al 2 (SO 4) 3 + 3H 2 2Al + 6H 2 SO 4 (конц) = Al 2 (SO 4) 3 + 3SO 2 + 6H 2 O
Алюминий восстанавливает металлы из их оксидов (алюминотермия): 8Al + 3Fe 3 O 4 = 4Al 2 O 3 + 9Fe

Важнейшие соединения:

Оксид алюминия , Al 2 O 3: твердое, тугоплавкое вещество белого цвета. Кристаллический Al 2 O 3 химически пассивен, аморфный - более активен. Медленно реагирует с кислотами и щелочами в растворе, проявляя амфотерные свойства:
Al 2 O 3 + 6НСl(конц.) = 2АlСl 3 + ЗН 2 О Al 2 O 3 + 2NаОН(конц.) + 3Н 2 О = 2Na
(в расплаве щелочи образуется NaAlO 2).
Гидроксид алюминия , Al(OH) 3: белый аморфный (гелеобразный) или кристаллический. Практически не растворим в воде. При нагревании ступенчато разлагается. Проявляет амфотерные, равно выраженные кислотные и основные свойства. При сплавлении с NaOH образуется NaAlO 2 . Для получения осадка Аl(ОН) 3 щелочь обычно не используют (из-за легкости перехода осадка в раствор), а действуют на соли алюминия раствором аммиака - при комнатной температуре образуется Аl(ОН) 3
Соли алюминия . Соли алюминия и сильных кислот хорошо растворимы в воде и подвергаются в значительной степени гидролизу по катиону, создавая сильнокислотную среду, в которой растворяются такие металлы, как магний и цинк: Al 3+ + H 2 O =AlOH 2+ + H +
Нерастворимы в воде фторид AlF 3 и ортофосфат АlРO 4 , а соли очень слабых кислот, например Н 2 СО 3 , вообще не образуются осаждением из водного раствора.
Известны двойные соли алюминия - квасцы состава MAl(SO 4) 2 *12H 2 O (M=Na + , K + , Rb + , Cs + , ТI + , NH 4 +), самые распространенные из них алюмокалиевые квасцы KAl(SO 4) 2 *12Н 2 O.
Растворение амфотерных гидроксидов в щелочных растворах рассматривается как процесс образования гидроксосолей (гидроксокомплексов). Экспериментально доказано существование гидроксомплексов [Аl(ОН) 4 (Н 2 О) 2 ] - , [Аl(ОН) 6 ] 3- , [Аl(ОН) 5 (Н 2 O)] 2- ; из них первый - наиболее прочный. Координационное число алюминия в этих комплексах равно 6, т.е. алюминий является шестикоординированным.
Бинарные соединения алюминия Соединения с преимущественно ковалентными связями, например сульфид Al 2 S 3 и карбид Аl 4 С 3 полностью разлагаются водой:
Al 2 S 3 + 6Н 2 О = 2Аl(ОН) 3 + 3Н 2 S Аl 4 С 3 + 12H 2 O = 4Аl(ОН) 3 + 3СН 4

Применение:

Широко применяется как конструкционный материал. Основные достоинства алюминия в этом качестве - лёгкость, податливость штамповке, коррозионная стойкость, высокая теплопроводность. Алюминий является важным компонентом многих сплавов (медные - алюминиевые бронзы, магниевые и др.)
Применяется в электротехнике для изготовления проводов, их экранирования.
Алюминий широко используется и в тепловом оборудовании и в криогенной технике.
Высокий коэффициент отражения в сочетании с дешевизной и лёгкостью напыления делает алюминий идеальным материалом для изготовления зеркал.
Алюминий и его соединения используются в ракетной технике в качестве ракетного горючего. В производстве строительных материалов как газообразующий агент.

Аллаяров Дамир
ХФ ТюмГУ, 561 группа.

Понравилась статья? Поделиться с друзьями: