Исследование функций на монотонность — Гипермаркет знаний. Что такое четные, периодичные, монотонные функции

Урок и презентация по алгебре в 10 классе на тему: "Исследование функции на монотонность. Алгоритм исследования"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Пособия и тренажеры в интернет-магазине "Интеграл" для 10 класса от 1С
Алгебраические задачи с параметрами, 9–11 классы
Программная среда "1С: Математический конструктор 6.1"

Что будем изучать:
1. Убывающие и возрастающие функции.
2. Связь производной и монотонности функции.
3. Две важные теоремы о монотонности.
4. Примеры.

Ребята, ранее мы с вами рассмотрели множество различных функций и строили их графики. Теперь давайте введем новые правила, которое работают для всех функций, которые мы рассматривали и еще будем рассматривать.

Убывающие и возрастающие функции

Давайте рассмотрим понятие возрастающей и убывающей функции. Ребята, а что такое функция?

Функцией называется соответствие y= f(x), в котором каждому значению x ставится в соответствие единственное значение y.

Посмотрим на график некоторой функции:


На нашем графике видно: чем больше x, тем меньше y. Итак, давайте дадим определение убывающей функции. Функция называется убывающей, если большему значению аргумента соответствует меньшее значение функции.

Если x2 > x1, то f(x2) Теперь давайте рассмотрим график такой функции:
На этом графике видно: чем больше x, тем больше y. Итак, давайте дадим определение возрастающей функции. Функция называется возрастающей, если большему значению аргумента соответствует большее значения функции.
Если x2 > x1, то f(x2 > f(x1) или: чем больше x, тем больше y.

Если функция возрастает или убывает на некотором промежутке, то говорят, что она монотонна на данном промежутке .

Связь производной и монотонности функции

Ребята, а теперь давайте подумаем, как можно применять понятие производной при исследовании графиков функций. Нарисуем график возрастающей дифференцируемой функции и проведем пару касательных к нашему графику.

Если посмотреть на наши касательные или зрительно провести любую другую касательную, то можно заметить, что угол между касательной и положительным направлением оси абсцисс будет острым. Значит, касательная имеет положительный угловой коэффициент. Угловой коэффициент касательной равен значению производной в абсциссе точки касания. Таким образом, значение производной положительно во всех точках нашего графика. Для возрастающей функции выполняет следующее неравенство: f"(x) ≥ 0, для любой точки x.

Ребята, теперь давайте посмотрим на график некоторой убывающей функции и построим касательные к графику функции.

Посмотрим на касательные и зрительно проведем любую другую касательную. Мы заметим, что угол между касательной и положительным направлением оси абсцисс - тупой, а значит касательная имеет отрицательный угловой коэффициент. Таким образом, значение производной отрицательно во всех точках нашего графика. Для убывающей функции выполняет следующее неравенство: f"(x) ≤ 0, для любой точки x.


Итак, монотонность функции зависит от знака производной:

Если функция возрастает на промежутке и имеет производную на этом промежутке, то эта производная будет не отрицательна.

Если функция убывает на промежутке и имеет производную на этом промежутке, то эта производная будет не положительна.

Важно , чтобы промежутки, на которых мы рассматриваем функцию были открытыми!

Две важные теоремы о монотонности

Теорема 1. Если во всех точках открытого промежутка Х выполняется неравенство f’(x) ≥ 0 (причем равенство производной нулю либо не выполняется, либо выполняется, но лишь в конечном множестве точек), то функция y= f(x) возрастает на промежутке Х.

Теорема 2. Если во всех точках открытого промежутка Х выполняется неравенство f’(x) ≤ 0 (причем равенство производной нулю либо не выполняется, либо выполняется, но лишь в конечном множестве точек), то функция y= f(x) убывает на промежутке Х.

Теорема 3. Если во всех точках открытого промежутка Х выполняется равенство
f’(x)= 0, то функция y= f(x) постоянна на этом промежутке.

Примеры исследования функции на монотонность

1) Доказать, что функция y= x 7 + 3x 5 + 2x - 1 возрастает на всей числовой прямой.

Решение: Найдем производную нашей функции: y"= 7 6 + 15x 4 + 2. Т.к. степень при x четная, то степенная функция принимает только положительные значения. Тогда y" > 0 для любого x, а значит по теореме 1, наша функция возрастает на всей числовой прямой.

2) Доказать, что функция убывает: y= sin(2x) - 3x.

Найдем производную нашей функции: y"= 2cos(2x) - 3.
Решим неравенство:
2cos(2x) - 3 ≤ 0,
2cos(2x) ≤ 3,
cos(2x) ≤ 3/2.
Т.к. -1 ≤ cos(x) ≤ 1, значит наше неравенство выполняется для любых x, тогда по теореме 2 функция y= sin(2x) - 3x убывает.

3) Исследовать на монотонность функцию: y= x 2 + 3x - 1.

Решение: Найдем производную нашей функции: y"= 2x + 3.
Решим неравенство:
2x + 3 ≥ 0,
x ≥ -3/2.
Тогда наша функция возрастает при x ≥ -3/2, а убывает при x ≤ -3/2.
Ответ: При x ≥ -3/2 - функция возрастает, при x ≤ -3/2 - функция убывает.

4) Исследовать на монотонность функцию: y= $\sqrt{3x - 1}$.

Решение: Найдем производную нашей функции: y"= $\frac{3}{2\sqrt{3x - 1}}$.
Решим неравенство: $\frac{3}{2\sqrt{3x - 1}}$ ≥ 0.

Наше неравенство больше либо равно нуля:
$\sqrt{3x - 1}$ ≥ 0,
3x - 1 ≥ 0,
x ≥ 1/3.
Решим неравенство:
$\frac{3}{2\sqrt{3x-1}}$ ≤ 0,

$\sqrt{3x-1}$ ≤ 0,
3x - 1 ≤ 0.
Но это невозможно, т.к. квадратный корень определен только для положительных выражений, значит промежутков убывания у нашей функции нет.
Ответ: при x ≥ 1/3 функция возрастает.

Задачи для самостоятельного решения

а) Доказать, что функция y= x 9 + 4x 3 + 1x - 10 возрастает на всей числовой прямой.
б) Доказать, что функция убывает: y= cos(5x) - 7x.
в) Исследовать на монотонность функцию: y= 2x 3 + 3x 2 - x + 5.
г) Исследовать на монотонность функцию: y = $\frac{3x-1}{3x+1}$.

Функция y=f(x) называется возрастающей на интервале (a;b) , если для любых x 1 и x 2 x 1 , справедливо f(x 1) Например, функции y=a x , y=log a x при a>1, y=arctg x, y=arcsin x, (nÎN) возрастают на всей своей области определения.

График возрастающей функции

· Функция y = f(x) называется убывающей на интервале (a;b), если для любых x 1 и x 2 из этого интервала таких, что x 1 , справедливо f(x 1)>f(x 2). Например, функции y=a x , y=log a x при 0<a<1, y=arcctg x, y=arccos x убывают на всей своей области определения.

График убывающей функции

· Убывающие и возрастающие функции вместе образуют класс монотонных функций. Монотонные функции обладают рядом специальных свойств.

Функция f(х), монотонная на отрезке [а,b ], ограничена на этом отрезке;

· сумма возрастающих (убывающих) функций является возрастающей (убывающей) функцией;

· если функция f возрастает (убывает) и n – нечетное число, то также возрастает (убывает);

· если f"(x)>0 для всех xÎ(a,b), то функция y=f(x) является возрастающей на интервале (a,b);

· если f"(x)<0 для всех xÎ(a,b), то функция y=f(x) является убывающей на интервале (a,b);

· если f(x) – непрерывная и монотонная функция на множестве Х , то уравнение f(x)=C , где С – данная константа, может иметь на Х не более одного решения;

· если на области определения уравнения f(x)=g(x) функция f(x) возрастает, а функция g(x) убывает, то уравнение не может иметь более одного решения.

Теорема. (достаточное условие монотонности функции). Если непрерывная на отрезке [а, b ] функция у = f (х ) в каждой точке интервала (а, b ) имеет положи­тельную (отрицательную) производную, то эта функция возрастает (убывает) на отрезке [а, b ].

Доказательство. Пусть >0 для всех хÎ (а,b ). Рассмотрим два произвольных значения x 2 > x 1 , принадлежащих [а, b ]. По формуле Лагранжа х 1 <с < х 2 . (с ) > 0 и х 2 – х 1 > 0, поэтому >0, откуда > , то есть функция f(х) возрастает на отрезке [а, b ]. Аналогично доказывается вторая часть теоремы.

Теорема 3. (необходимый признак существования экстремума функции). Если дифференцируемая в точке c функция у = f (х ) имеет в этой точке экстремум, то .

Доказательство. Пусть, например, функция у = f (х ) имеет в точке c максимум. Это означает, что существует такая проколотая окрестность точки c, что для всех точек x этой окрестности выполняется f (x ) < f (c ), то есть f (c ) – наибольшее зна­чение функции в этой окрестности. Тогда по теореме Ферма .

Аналогично доказывается случай минимума в точке c.

Замечание. Функция может иметь экстремум в точке, в которой ее производная не существует. Например, функция имеет минимум в точке x = 0, хотя не существует. Точки, в которых производная функции равна нулю или не сущест­вует, называются критическими точками функции. Однако не во всех критиче­ских точках функция имеет экстремум. Например, функция у = x 3 не имеет экс­тремумов, хотя ее производная =0.

Теорема 4. (достаточный признак существования экстремума). Если непрерывная функция у = f (x ) имеет производную во всех точках некоторого интервала, содержащего критическую точку С (за исключением, может быть, самой этой точки), и если производная при переходе аргумента слева направо через критическую точку С меняет знак с плюса на минус, то функция в точке С имеет максимум, а при перемене знака с минуса на плюс – минимум.

Доказательство. Пусть c – критическая точка и пусть, например, при переходе аргумента через точку c меняет знак с плюса на минус. Это означает, что на некотором интервале(c–e; c) функция возрастает, а на интервале (c; c+e) – убывает (при e >0). Следовательно, в точке с функция имеет максимум. Аналогично доказывается случай минимума.

Замечание. Если производная не меняет знака при переходе аргумента через критическую точку, то функция в этой точке не имеет экстремума.

Так как определения предела и непрерывности для функции нескольких переменных практически совпадает с соответствующими определениями для функции одной переменной, то для функций нескольких переменных сохраняются все свойства пределов и непрерывных функций


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-12

Моното́нная фу́нкция - это функция, приращение которой не меняет знака, то есть либо всегда неотрицательное, либо всегда неположительное. Если в дополнение приращение не равно нулю, то функция называется стро́го моното́нной . Монотонная функция - это функция, меняющаяся в одном и том же направлении.

Функция возрастает, если большему значению аргумента соответствует большее значение функции. Функция убывает, если большему значению аргумента соответствует меньшее значение функции.

Пусть дана функция Тогда

(Строго) возрастающая или убывающая функция называется (строго) монотонной.

Определение экстремума

Функция y = f(x) называется возрастающей (убывающей) в некотором интервале, если при x1< x2 выполняется неравенство (f(x1) < f(x2) (f(x1) > f(x2)).

Если дифференцируемая функция y = f(x) на отрезке возрастает (убывает), то ее производная на этом отрезке f "(x) > 0

(f " (x) < 0).

Точка xо называется точкой локального максимума (минимума) функции f(x), если существует окрестность точки xо, для всех точек которой верно неравенство f(x) ≤ f(xо) (f(x) ≥ f(xо)).

Точки максимума и минимума называются точками экстремума, а значения функции в этих точках - ее экстремумами.

Точки экстремума

Необходимые условия экстремума. Если точка xо является точкой экстремума функции f(x), то либо f "(xо) = 0, либо f (xо) не существует. Такие точки называют критическими, причем сама функция в критической точке определена. Экстремумы функции следует искать среди ее критических точек.

Первое достаточное условие. Пусть xо - критическая точка. Если f " (x) при переходе через точку xо меняет знак плюс на минус, то в точке xо функция имеет максимум, в противном случае - минимум. Если при переходе через критическую точку производная не меняет знак, то в точке xо экстремума нет.

Второе достаточное условие. Пусть функция f(x) имеет производную f " (x) в окрестности точки xо и вторую производную в самой точке xо. Если f " (xо) = 0,>0 (<0), то точка xоявляется точкой локального минимума (максимума) функции f(x). Если же=0, то нужно либо пользоваться первым достаточным условием, либо привлекать высшие производные.

На отрезке функция y = f(x) может достигать наименьшего или наибольшего значения либо в критических точках, либо на концах отрезка .

7. Интервалы выпуклости, вогнутости функции .Точки перегиба.

График функции y =f(x) называется выпуклым на интервале (a; b) , если он расположен ниже любой своей касательной на этом интервале.

График функции y =f(x) называется вогнутым на интервале (a; b) , если он расположен выше любой своей касательной на этом интервале.

На рисунке показана кривая, выпуклая на (a; b) и вогнутая на (b; c) .

Примеры.

Рассмотрим достаточный признак, позволяющий установить, будет ли график функции в данном интервале выпуклым или вогнутым.

Теорема . Пусть y =f(x) дифференцируема на (a; b) . Если во всех точках интервала (a; b) вторая производная функции y = f(x) отрицательная, т.е. f ""(x ) < 0, то график функции на этом интервале выпуклый, если же f ""(x ) > 0 – вогнутый.

Доказательство . Предположим для определенности, что f ""(x ) < 0 и докажем, что график функции будет выпуклым.

Возьмем на графике функции y = f(x) произвольную точку M 0 с абсциссой x 0  (a ; b ) и проведем через точку M 0 касательную. Ее уравнение . Мы должны показать, что график функции на (a; b) лежит ниже этой касательной, т.е. при одном и том же значении x ордината кривой y = f(x) будет меньше ордината касательной.

Точка перегиба функции

У этого термина существуют и другие значения, см. Точка перегиба .

Точка перегиба функции внутренняя точкаобласти определения , такая чтонепрерывна в этой точке, существует конечная или определенного знака бесконечная производная в этой точке, иявляется одновременно концом интервала строгой выпуклости вверх и началом интервала строгой выпуклости вниз, или наоборот.

Неофициальное

В этом случае точка являетсяточкой перегиба графика функции, то есть график функции в точке«перегибается» черезкасательную к нему в этой точке: при касательная лежит под графиком, а при- над графиком(или наоборот)

Теорема о пределе монотонной функции. Приводится доказательство теоремы, используя два метода. Также даны определения строго возрастающей, неубывающей, строго убывающей и невозрастающей функций. Определение монотонной функции.

Определения

Определения возрастающей и убывающей функций
Пусть функция f(x) определена на некотором множестве действительных чисел X .
Функция называется строго возрастающей (строго убывающей) , если для всех x′, x′′ ∈ X таких что x′ < x′′ выполняется неравенство:
f(x′) < f(x′′) ( f(x′) > f(x′′) ) .
Функция называется неубывающей (невозрастающей) , если для всех x′, x′′ ∈ X таких что x′ < x′′ выполняется неравенство:
f(x′) ≤ f(x′′) ( f(x′) ≥ f(x′′) ) .

Отсюда следует, что строго возрастающая функция также является неубывающей. Строго убывающая функция также является невозрастающей.

Определение монотонной функции
Функция называется монотонной , если она неубывающая или невозрастающая.

Для исследования монотонности функции на некотором множестве X , нужно найти разность ее значений в двух произвольных точках , принадлежащих этому множеству. Если , то функция строго возрастает; если , то функция не убывает; если , то строго убывает; если , то не возрастает.

Если на некотором множестве функция положительна: , то для определения монотонности, можно исследовать частное от деления ее значений в двух произвольных точках этого множества. Если , то функция строго возрастает; если , то функция не убывает; если , то строго убывает; если , то не возрастает.

Теорема
Пусть функция f(x) не убывает на интервале (a, b) , где .
Если она ограничена сверху числом M : , то существует конечный левый предел в точке b : . Если f(x) не ограничена сверху, то .
Если f(x) ограничена снизу числом m : , то существует конечный правый предел в точке a : . Если f(x) не ограничена снизу, то .

Если точки a и b являются бесконечно удаленными, то в выражениях под знаками пределов подразумевается, что .
Эту теорему можно сформулировать более компактно.

Пусть функция f(x) не убывает на интервале (a, b) , где . Тогда существуют односторонние пределы в точках a и b :
;
.

Аналогичная теорема для невозрастающей функции.

Пусть функция не возрастает на интервале , где . Тогда существуют односторонние пределы:
;
.

Следствие
Пусть функция является монотонной на интервале . Тогда в любой точке из этого интервала, существуют односторонние конечные пределы функции :
и .

Доказательство теоремы

Функция не убывает

b - конечное число
Функция ограничена сверху


1.1.1. Пусть функция ограничена сверху числом M : при .


.
;
.

Поскольку функция не убывает, то при . Тогда
при .
Преобразуем последнее неравенство:
;
;
.
Поскольку , то . Тогда
при .


при .
«Определения односторонних пределов функции в конечной точке»).

Функция не ограничена сверху

1. Пусть функция не убывает на интервале .
1.1. Пусть число b конечное: .
1.1.2. Пусть функция не ограничена сверху.
Докажем, что в этом случае существует предел .


.


при .

Обозначим . Тогда для любого существует , так что
при .
Это означает, что предел слева в точке b равен (см. «Определения односторонних бесконечных пределов функции в конечной точке»).

b рано плюс бесконечности
Функция ограничена сверху

1. Пусть функция не убывает на интервале .
1.2.1. Пусть функция ограничена сверху числом M : при .
Докажем, что в этом случае существует предел .

Поскольку функция ограничена сверху, то существует конечная верхняя грань
.
Согласно определению точной верхней грани, выполняются следующие условия:
;
для любого положительного существует такой аргумент , для которого
.

Поскольку функция не убывает, то при . Тогда при . Или
при .

Итак, мы нашли, что для любого существует число , так что
при .
«Определения односторонних пределов на бесконечности»).

Функция не ограничена сверху

1. Пусть функция не убывает на интервале .
1.2. Пусть число b равно плюс бесконечности: .
1.2.2. Пусть функция не ограничена сверху.
Докажем, что в этом случае существует предел .

Поскольку функция не ограничена сверху, то для любого числа M существует такой аргумент , для которого
.

Поскольку функция не убывает, то при . Тогда при .

Итак, для любого существует число , так что
при .
Это означает, что предел при равен (см. «Определения односторонних бесконечных пределов на бесконечности»).

Функция не возрастает

Теперь рассмотрим случай, когда функция не возрастает. Можно, как и выше, рассмотреть каждый вариант по отдельности. Но мы охватим их сразу. Для этого используем . Докажем, что в этом случае существует предел .

Рассмотрим конечную нижнюю грань множества значений функции:
.
Здесь B может быть как конечным числом, так и бесконечно удаленной точкой . Согласно определению точной нижней грани, выполняются следующие условия:
;
для любой окрестности точки B существует такой аргумент , для которого
.
По условию теоремы, . Поэтому .

Поскольку функция не возрастает, то при . Поскольку , то
при .
Или
при .
Далее замечаем, что неравенство определяет левую проколотую окрестность точки b .

Итак, мы нашли, что для любой окрестности точки , существует такая проколотая левая окрестность точки b , что
при .
Это означает, что предел слева в точке b равен :

(см. универсальное определение предела функции по Коши).

Предел в точке a

Теперь покажем, что существует предел в точке a и найдем его значение.

Рассмотрим функцию . По условию теоремы, функция является монотонной при . Заменим переменную x на - x (или сделаем подстановку , а затем заменим переменную t на x ). Тогда функция является монотонной при . Умножая неравенства на -1 и меняя их порядок приходим к выводу, что функция является монотонной при .

Аналогичным способом легко показать, что если не убывает, то не возрастает. Тогда согласно доказанному выше, существует предел
.
Если не возрастает, то не убывает. В этом случае существует предел
.

Теперь осталось показать, что если существует предел функции при , то существует предел функции при , и эти пределы равны:
.

Введем обозначение:
(1) .
Выразим f через g :
.
Возьмем произвольное положительное число . Пусть есть эпсилон окрестность точки A . Эпсилон окрестность определяется как для конечных, так и для бесконечных значений A (см. «Окрестность точки»). Поскольку существует предел (1), то, согласно определению предела, для любого существует такое , что
при .

Пусть a - конечное число. Выразим левую проколотую окрестность точки -a , используя неравенства:
при .
Заменим x на -x и учтем, что :
при .
Последние два неравенства определяют проколотую правую окрестность точки a . Тогда
при .

Пусть a - бесконечное число, . Повторяем рассуждения.
при ;
при ;
при ;
при .

Итак, мы нашли, что для любого существует такое , что
при .
Это означает, что
.

Теорема доказана.

Которой не меняет знака, то есть либо всегда неотрицательное, либо всегда неположительное. Если в дополнение приращение не равно нулю, то функция называется стро́го моното́нной . Монотонная функция - это функция, меняющаяся в одном и том же направлении.

Функция возрастает, если большему значению аргумента соответствует большее значение функции. Функция убывает, если большему значению аргумента соответствует меньшее значение функции.

Определения

Пусть дана функция Тогда

. . . .

(Строго) возрастающая или убывающая функция называется (строго) монотонной.

Другая терминология

Иногда возрастающие функции называют неубыва́ющими , а убывающие функции невозраста́ющими . Строго возрастающие функции тогда зовут просто возрастающими, а строго убывающие просто убывающими.

Свойства монотонных функций

Условия монотонности функции

Обратное, вообще говоря, неверно. Производная строго монотонной функции может обращаться в ноль . Однако, множество точек, где производная не равна нулю, должно быть плотно на интервале Точнее имеет место

Аналогично, строго убывает на интервале тогда и только тогда, когда выполнены следующие два условия:

Примеры

См. также


Wikimedia Foundation . 2010 .

  • Слюна
  • Горьковская железная дорога

Смотреть что такое "Монотонная функция" в других словарях:

    Монотонная функция - — функция f(x), которая может быть либо возрастающей на некотором промежутке (то есть, чем больше любое значение аргумента на этом промежутке, тем больше значение функции), либо убывающей (в противоположном случае).… …

    МОНОТОННАЯ ФУНКЦИЯ - функция, которая при возрастании аргумента либо всегда возрастает (или хотя бы не убывает), либо всегда убывает (не возрастает) … Большой Энциклопедический словарь

    МОНОТОННАЯ ФУНКЦИЯ - (monotonie function) Функция, в которой по мере роста значения аргумента значение функции всегда изменяется в том же направлении. Следовательно, если у=f(x), то либо dy/dx > 0 для всех значений х, и в этом случае у является возрастающей… … Экономический словарь

    Монотонная функция - (от греч. monótonos однотонный) функция, приращения которой Δf(x) = f(x’) f(x) при Δx = x’ x > 0 не меняют знака, т. е. либо всегда неотрицательны, либо всегда неположительны. Выражаясь не совсем точно, М. ф. это функции, меняющиеся в… … Большая советская энциклопедия

    монотонная функция - функция, которая при возрастании аргумента либо всегда возрастает (или хотя бы не убывает), либо всегда убывает (не возрастает). * * * МОНОТОННАЯ ФУНКЦИЯ МОНОТОННАЯ ФУНКЦИЯ, функция, которая при возрастании аргумента либо всегда возрастает (или… … Энциклопедический словарь

    МОНОТОННАЯ ФУНКЦИЯ - функция одного переменного, определенная на нек ром подмножестве действительных чисел, приращение к рой при не меняет знака, т. е. либо всегда неотрицательно, либо всегда неположительно. Если строго больше (меньше) нуля, когда то М. ф. наз.… … Математическая энциклопедия

    МОНОТОННАЯ ФУНКЦИЯ - функция, к рая при возрастании аргумента либо всегда возрастает (или хотя бы не убывает), либо всегда убывает (не возрастает) … Естествознание. Энциклопедический словарь

    Монотонная последовательность - это последовательность, элементы которой с увеличением номера не убывают, или, наоборот, не возрастают. Подобные последовательности часто встречаются при исследованиях и имеют ряд отличительных особенностей и дополнительных свойств.… … Википедия

    функция - Команда или группа людей, а также инструментарий или другие ресурсы, которые они используют для выполнения одного или нескольких процессов или деятельности. Например, служба поддержки пользователей. Этот термин также имеет другое значение:… … Справочник технического переводчика

    Функция - 1. Зависимая переменная величина; 2. Соответствие y=f(x) между переменными величинами, в силу которого каждому рассматриваемому значению некоторой величины x (аргумента или независимой переменной) соответствует определенное значение… … Экономико-математический словарь

Понравилась статья? Поделиться с друзьями: