Схема и цель опыта штерна. Опыт штерна

1 - платиновая проволока с нанесённым на неё слоем серебра; 2 - щель, формирующая пучок атомов серебра; 3 - пластинка, на которой осаждаются атомы серебра; П и П1 - положения полосок осажденного серебра при неподвижном приборе и при вращении прибора.

Для проведения опыта Штерном был подготовлен прибор, состоящий из двух цилиндров разного радиуса, ось которых совпадала и на ней располагалась платиновая проволока с нанесённым слоем серебра . В пространстве внутри цилиндров посредством непрерывной откачки воздуха поддерживалось достаточно низкое давление . При пропускании электрического тока через проволоку достигалась температура плавления серебра, из-за чего серебро начинало испаряться и атомы серебра летели к внутренней поверхности малого цилиндра равномерно и прямолинейно со скоростью v {\displaystyle v} , определяемой температурой нагрева платиновой проволоки, то есть температурой плавления серебра. Во внутреннем цилиндре была проделана узкая щель, через которую атомы могли беспрепятственно пролетать далее. Стенки цилиндров специально охлаждались, что способствовало оседанию попадающих на них атомов. В таком состоянии на внутренней поверхности большого цилиндра образовывалась достаточно чёткая узкая полоса серебряного налёта, расположенная прямо напротив щели малого цилиндра. Затем всю систему начинали вращать с некой достаточно большой угловой скоростью ω {\displaystyle \omega } . При этом полоса налёта смещалась в сторону, противоположную направлению вращения, и теряла чёткость. Измерив смещение s {\displaystyle s} наиболее тёмной части полосы от её положения, когда система покоилась, Штерн определил время полёта, через которое нашёл скорость движения молекул:

t = s u = l v ⇒ v = u l s = ω R b i g (R b i g − R s m a l l) s {\displaystyle t={\frac {s}{u}}={\frac {l}{v}}\Rightarrow v={\frac {ul}{s}}={\frac {\omega R_{big}(R_{big}-R_{small})}{s}}} ,

где s {\displaystyle s} - смещение полосы, l {\displaystyle l} - расстояние между цилиндрами, а u {\displaystyle u} - скорость движения точек внешнего цилиндра.

Найденная таким образом скорость движения атомов серебра (584 м/с) совпала со скоростью, рассчитанной по законам молекулярно-кинетической теории, а тот факт, что получившаяся полоска была размытой, свидетельствовал в пользу того, что скорости атомов различны и распределены по некоторому закону - закону распределения Максвелла : атомы, двигавшиеся быстрее, смещались относительно полосы, полученной в состоянии покоя, на меньшие расстояния, чем те, которые двигались медленнее. При этом опыт давал лишь приблизительные сведения о характере распределения Максвелла, более точное экспериментальное подтверждение относится к 1930 году (

Документальные учебные фильмы. Серия «Физика».

Наличие у атомов магнитных моментов и их квантование было доказано прямыми опытами Штерна и Герлаха (1889- 1979) в 1921 г. В сосуде с высоким вакуумом создавался с помощью диафрагм резко ограниченный атомный пучок исследуемого элемента, испаряющегося в печи К. Пучок проходил через сильное магнитное поле Н между полюсньми наконечниками N и S электромагнита. Один из наконечников (N) имел вид призмы с острым ребром, а вдоль другого (S) была выточена канавка. Благодаря такой конструкции полюсных наконечников магнитное поле получалось сильно неоднородным. После прохождения через магнитное поле пучок попадал на фотопластинку Р и оставлял на ней след.

Рассчитаем поведение атомного пучка сначала с классической точки зрения, предполагая, что никакого квантования магнитных моментов нет. Если m-магнитный момент атома, то на атом в неоднородном магнитном поле действует сила
Направим ось Z вдоль магнитного поля (т. е. от N к S перпендикулярно к полюсным наконечникам). Тогда проекция силы в этом направлении будет
Первые два слагаемых в этом выражении не играют роли.

В самом деле, по классическим представлениям атом в магнитном поле совершает прецессию вокруг оси Z, вращаясь с ларморовской частотой
(заряд лектрона обозначен -е). Поэтому проекции совершают колебания с той же частотой, становясь попеременно то положительными, то отрицательными. Если угловая скорость прецессии достаточно велика, то силу fz можно усреднить по времени. При этом первые два члена в выражении для fz обратятся в нуль, и можно написать

Чтобы составить представление о степени допустимости та кого усреднения, произведем численную оценку. Период ларморовской прецессии равен ,

где поле Н измеряется в гауссах. Например, при Н = 1000 Гс получаем с. Если скорость атомов в пучке равна = 100 м/с = см/с, то за это время атом пролетает расстояние см, пренебрежимо малое по сравнению со всеми характерными размерами установки. Это и доказывает применимость проведенного усреднения.

Но формула может быть оправдана и с квантовой точки зрения. В самом деле, включение сильного магнитного поля вдоль оси Z приводит к состоянию атома только с одной определенной составляющей магнитного момента, а именно . Остальные две составляющие в этом состоянии не могут иметь определенных значений. При измерениях в этом состоянии получили бы различные значения и притом их средние были бы равны нулю. Поэтому и при квантовом рассмотрении усреднение оправдано.

Тем не менее следует ожидать различных результатов опыта с классической и с квантовой точек зрения. В опытах Штерна и Герлаха сначала получался след атомного пучка при выключенном магнитном поле, а затем при включенном. Если бы проекция могла принимать всевозможные непрерывные значения, как требует классическая теория, то сила fz также принимала бы всевозможные непрерывные значения. Включение магнитного поля приводило бы только к уширению пучка. Не то следует ожидать по квантовой теории. В этом случае проекция mz, а с ней и средняя сила fz квантованы, т. е. могут принимать только ряд дискретных избранных значений. Если орбитальное квантовое число атома равно I , то по теории при расщеплении получится пучков (т. е. оно равно числу возможных значений, которые может принимать квантовое число m). Таким образом, в зависимости от значения числа I следовало бы ожидать, что пучок расщепится на 1, 3, 5, ... составляющих. Ожидаемое число составляющих должно было бы быть всегда нечетным.

Опыты Штерна и Герлаха доказали квантование проекции . Однако их результаты не всегда соответствовали теории, изложенной выше. В первоначальных опытах применялись пучки атомов серебра. В магнитном поле пучок расщеплялся на две составляющие. То же получалось для атомов водорода. Для атомов других химических элементов получалась и более сложная картина расщепления, однако число расщепленных пучков получалось не только нечетным, что требовалось теорией, но и четным, что противоречило ей. В теорию необходимо было внести коррективы.

К этому следует добавить результаты опытов Эйнштейна и де Гааза (1878-1966), а также опытов Барнета (1873-1956) по определению гиромагнитного отношения. Для железа, например, оказалось, что гиромагнитное отношение равно т. е. вдвое больше, чем требуется по теории.

Наконец, оказалось, что спектральные термы щелочных металлов имеют так называемую дублетную структуру, т. е. состоят из двух близко расположенных уровней. Для описания этой структуры трех квантовых чисел n, I , m оказалось недостаточно-потребовалось четвертое квантовое число. Это явилось главным мотивом, послужившим Уленбеку (р. 1900) и Гаудсмиту (1902-1979) в 1925 г. для введения гипотезы о спине электрона. Сущность этой гипотезы состоит в том, что у электрона есть не только момент количества движения и магнитный момент, связанные с перемещением этой частицы как целого. Электрон имеет также собственный или внутренний механический момент количества движения, напоминая в этом отношении классический волчок. Этот собственный момент количества движения и называется спином (от английского слова to spin - вертеться). Соответствующий ему магнитный момент называется спиновым магнитным моментом. Эти моменты обозначаются соответственно через в отличие от орбитальных моментов Спин чаще обозначают просто через s .

В опытах Штерна и Герлаха атомы водорода находились в s-состоянии, т. е. не обладали орбитальными моментами. Магнитный момент ядра пренебрежимо мал. Поэтому Уленбек и Гаудсмит предположили, что расщепление пучка обусловлено не орбитальным, а спиновым магнитным моментом. То же самое относится к опытам с атомами серебра. Атом серебра имеет единственный наружный электрон. Атомный остов ввиду его симметрии спиновым и магнитным моментами не обладает. Весь магнитный момент атома серебра создается только одним наружным электроном. Когда атом находится в нормальном, т. е. s-состоянии, то орбитальный момент валентного электрона равен нулю - весь момент является спиновым.

Сами Уленбек и Гаудсмит предполагали, что спин возникает из-за вращения электрона вокруг собственной оси. Существовавшая в то время модель атома получила еще большее сходство с Солнечной системой. Электроны (планеты) не только вращаются вокруг ядра (Солнца), но и вокруг собственных осей. Однако сразу же выяснилась несостоятельность такого классического представления о спине. Паули систематически ввел спин в квантовую механику, но исключил всякую возможность классического истолкования этой величины. В 1928 г. Дирак показал, что спин электрона автоматически содержится в его теории электрона, основанной на релятивистском волновом уравнении. В теории Дирака содержится также и спиновый магнитный момент электрона, причем для гиромагнитного отношения получается значение, согласующееся с опытом. При этом о внутренней структуре электрона ничего не говорилось - последний рассматривался как точечная частица, обладающая лишь зарядом и массой. Таким образом, спин электрона оказался квантово-релятивистским эффектом, не имеющим классического истолкования. Затем концепция спина, как внутреннего момента количества движения, была распространена на другие элементарные и сложные частицы и нашла подтверждение и широкие применения в современной физике.

Разумеется, в общем курсе физики нет возможности вдаваться в подробную и строгую теорию спина. Мы примем в качестве исходного положения, что спину s соответствует векторный оператор проекции которого удовлетворяют таким же перестановочным соотношениям, что и проекции оператора орбитального момента, т. е.

Из них следует, что определенные значения в одном и том же состоянии могут иметь квадрат полного спина и одна из его проекций на определенную ось (принимаемую обычно за ось Z). Если максимальное значение проекции sz (в единицах ) равно s, то число всех возможных проекций, соответствующих данному s, будет равно 2s + 1. Опыты Штерна и Герлаха показали, что для электрона это число равно 2, т. е. 2s + 1 = 2, откуда s = 1/2. Максимальное значение, которое может принимать проекция спина на избранное направление (в единицах ), т. е. число s, и принимается за значение спина частицы.

Спин частицы может быть либо целым, либо полуцелым. Для электрона, таким образом, спин равен 1/2. Из перестановочных соотношений следует, что квадрат спина частицы равен , а для электрона (в единицах 2).
Измерения проекции магнитного момента по методу Штерна и Герлаха показали, что для атомов водорода и серебра величина равна магнетону Бора , т. е. . Таким образом, гиромагнитное отношение для электрона

Предположение, что молекулы тела могут иметь любую скорость, сначала теоретически доказал в 1856 году английский физик Дж. Максвелл . Он считал, что ско-рость молекул в данный момент времени является случайной, и поэтому их распре-деление по скоростям носит статистический характер (распределение Максвелла ).

Установленный им характер распределе-ния молекул по скоростям графически пред-ставлен кривой, изображенной на рис. 1.17. Наличие у нее максимума (бугра) свиде-тельствует о том, что скорости большинства молекул приходятся на определенный ин-тервал. Она несимметричная, поскольку мо-лекул с большими скоростями меньше, чем с небольшими.

Быстрые молекулы определяют течение многих физических процессов при обычных условиях. Например, благодаря им происхо-дит испарение жидкостей, ведь при ком-натной температуре большинству молекул недостаточно энергии, чтобы разорвать связь с другими молекулами (она намного выше (3 / 2) . kT), а у молекул с высокими скоростями она достаточная.

Рис. 1.18. Опыт О. Штерна

Распределение молекул по скоростям Мак-свелла на протяжении продолжительного вре-мени оставалось экспериментально непод-твержденным, и лишь в 1920 году немецкий ученый О. Штерн сумел экспериментально измерить скорости теплового движения мо-лекул .

На горизонтальном столе, который мог поворачиваться вокруг вертикальной оси (рис. 1.18), находились два коаксиальных цилиндра A и B. из которых откачивали воздух до давления порядка 10 -8 Па. Вдоль оси цилиндров находилась платиновая про-волока C, покрытая тонким слоем серебра. При прохождении по проволоке электри-ческого тока она нагревалась, и с ее по-верхности интенсивно испарялось серебро, которое преимущественно оседало на внут-ренней поверхности цилиндра A. Часть мо-лекул серебра проходила сквозь узкую щель в цилиндре A наружу, попадая на поверх-ность цилиндра B. Если цилиндры не вра-щались, молекулы серебра, двигаясь прямо-линейно, оседали напротив щели в окруж-ности точки D. Когда же систему приво-дили в движение с угловой скоростью около 2500—2700 об/с, изображение щели смеща-лось в точку E, а ее края «размывались», образовывая бугор с пологими склонами.

В науке опыт Штерна оконча-тельно подтвердил справедли-вость молекулярно-кинетической теории.

Приняв во внимание, что смещение l = v . t = ω R A t , а время полета молекул t = (R B — R A) / v , получим:

l = ω(R B — R A) R A / v .

Как видно из формулы, смешение мо-лекулы от точки D зависит от скорости ее движения. Вычисления скорости молекул серебра по данным опыта Штерна при тем-пературе спирали около 1200 °C давали зна-чения в пределах от 560 до 640 м/c, что хорошо сочеталось с теоретически опре-деленной средней скоростью молекул 584 м/с.

Средняя скорость теплового движения мо-лекул газа может быть найдена с помощью уравнения p = nm 0 v̅ 2 х :

E̅ = (3 / 2) . kT = m 0 v̅ 2 / 2.

Отсюда средний квадрат скорости посту-пательного движения молекулы равен:

v̅ 2 = 3 kT / m 0 , или v̅ = √(v̅ 2) = √(3 kT / m 0). Материал с сайта

Корень квадратный из средне-го квадрата скорости молеку-лы называется средней квад-ратичной скоростью .

Учитывая, что k = R / N A и m 0 = M / N A , из формулы v̅ = √(3 kT / m 0) получим:

v̅ = (3RT / M).

По этой формуле можно вычислить сред-нюю квадратичную скорость молекул для лю-бого газа. Например, при 20°C (T = 293K) для кислорода она равна 478 м/с, для воздуха — 502 м/с, для водорода — 1911 м/с. Даже при таких значительных скоростях (при-близительно равняется скорости распростра-нения звука в данном газе) передвижение молекул газа не такое уж стремительное, поскольку между ними происходят много-численные столкновения. Поэтому траекто-рия движения молекулы напоминает траек-торию движения броуновской частицы.

Средняя квадратичная скорость молекулы не существенно от-личается от средней скорости ее теплового движения — она приблизительно в 1,2 раза боль-ше.

На этой странице материал по темам:

  • Молекулярная физика доклад

  • 10 класс физика скорость движения молекул опыт штерна

  • Опыт штерна суть кратко

  • Реферат про опыт штерна

  • Доклад по физике опыт штерна

Вопросы по этому материалу:

Году. Опыт являлся одним из первых практических доказательств состоятельности молекулярно-кинетической теории строения вещества. В нём были непосредственно измерены скорости теплового движения молекул и подтверждено наличие распределения молекул газов по скоростям .

Для проведения опыта Штерном был подготовлен прибор, состоящий из двух цилиндров разного радиуса, ось которых совпадала и на ней располагалась платиновая проволока с нанесённым слоем серебра . В пространстве внутри цилиндров посредством непрерывной откачки воздуха поддерживалось достаточно низкое давление . При пропускании электрического тока через проволоку достигалась температура плавления серебра, из-за чего серебро начинало испаряться и атомы серебра летели к внутренней поверхности малого цилиндра равномерно и прямолинейно со скоростью v , определяемой температурой нагрева платиновой проволоки, т. е. температурой плавления серебра. Во внутреннем цилиндре была проделана узкая щель, через которую атомы могли беспрепятственно пролетать далее. Стенки цилиндров специально охлаждались, что способствовало оседанию попадающих на них атомов. В таком состоянии на внутренней поверхности большого цилиндра образовывалась достаточно чёткая узкая полоса серебряного налёта, расположенная прямо напротив щели малого цилиндра. Затем всю систему начинали вращать с некой достаточно большой угловой скоростью ω . При этом полоса налёта смещалась в сторону, противоположную направлению вращения, и теряла чёткость. Измерив смещение s наиболее тёмной части полосы от её положения, когда система покоилась, Штерн определил время полёта, через которое нашёл скорость движения молекул:

t=\frac{s}{u}=\frac{l}{v} \Rightarrow v=\frac{ul}{s}=\frac{\omega R_{big} (R_{big}-R_{small})}{s},

где s - смещение полосы, l - расстояние между цилиндрами, а u - скорость движения точек внешнего цилиндра.

Найденная таким образом скорость движения атомов серебра совпала со скоростью, рассчитанной по законам молекулярно-кинетической теории, а тот факт, что получившаяся полоска была размытой, свидетельствовал в пользу того, что скорости атомов различны и распределены по некоторому закону - закону распределения Максвелла : атомы, двигавшиеся быстрее, смещались относительно полосы, полученной в состоянии покоя, на меньшие расстояния, чем те, которые двигались медленнее.

Напишите отзыв о статье "Опыт Штерна"

Литература

  • Краткий словарь физических терминов / Сост. А. И. Болсун, рец. М. А. Ельяшевич. - Мн. : Вышэйшая школа, 1979. - С. 388. - 416 с. - 30 000 экз.

Ссылки

  • Ландсберг. Элементарный учебник физики. Том 1. Механика. Теплота. Молекулярная физика. - 12-е изд. - М .: ФИЗМАТЛИТ, 2001. - ISBN 5-9221-0135-8 .
  • Интернет-школа Просвещение.ру. (рус.) (недоступная ссылка - история ) . Проверено 5 апреля 2008.
  • Штерна опыт - статья из Большой советской энциклопедии .

Отрывок, характеризующий Опыт Штерна

Так он лежал и теперь на своей кровати, облокотив тяжелую, большую изуродованную голову на пухлую руку, и думал, открытым одним глазом присматриваясь к темноте.
С тех пор как Бенигсен, переписывавшийся с государем и имевший более всех силы в штабе, избегал его, Кутузов был спокойнее в том отношении, что его с войсками не заставят опять участвовать в бесполезных наступательных действиях. Урок Тарутинского сражения и кануна его, болезненно памятный Кутузову, тоже должен был подействовать, думал он.
«Они должны понять, что мы только можем проиграть, действуя наступательно. Терпение и время, вот мои воины богатыри!» – думал Кутузов. Он знал, что не надо срывать яблоко, пока оно зелено. Оно само упадет, когда будет зрело, а сорвешь зелено, испортишь яблоко и дерево, и сам оскомину набьешь. Он, как опытный охотник, знал, что зверь ранен, ранен так, как только могла ранить вся русская сила, но смертельно или нет, это был еще не разъясненный вопрос. Теперь, по присылкам Лористона и Бертелеми и по донесениям партизанов, Кутузов почти знал, что он ранен смертельно. Но нужны были еще доказательства, надо было ждать.
«Им хочется бежать посмотреть, как они его убили. Подождите, увидите. Все маневры, все наступления! – думал он. – К чему? Все отличиться. Точно что то веселое есть в том, чтобы драться. Они точно дети, от которых не добьешься толку, как было дело, оттого что все хотят доказать, как они умеют драться. Да не в том теперь дело.
И какие искусные маневры предлагают мне все эти! Им кажется, что, когда они выдумали две три случайности (он вспомнил об общем плане из Петербурга), они выдумали их все. А им всем нет числа!»
Неразрешенный вопрос о том, смертельна или не смертельна ли была рана, нанесенная в Бородине, уже целый месяц висел над головой Кутузова. С одной стороны, французы заняли Москву. С другой стороны, несомненно всем существом своим Кутузов чувствовал, что тот страшный удар, в котором он вместе со всеми русскими людьми напряг все свои силы, должен был быть смертелен. Но во всяком случае нужны были доказательства, и он ждал их уже месяц, и чем дальше проходило время, тем нетерпеливее он становился. Лежа на своей постели в свои бессонные ночи, он делал то самое, что делала эта молодежь генералов, то самое, за что он упрекал их. Он придумывал все возможные случайности, в которых выразится эта верная, уже свершившаяся погибель Наполеона. Он придумывал эти случайности так же, как и молодежь, но только с той разницей, что он ничего не основывал на этих предположениях и что он видел их не две и три, а тысячи. Чем дальше он думал, тем больше их представлялось. Он придумывал всякого рода движения наполеоновской армии, всей или частей ее – к Петербургу, на него, в обход его, придумывал (чего он больше всего боялся) и ту случайность, что Наполеон станет бороться против него его же оружием, что он останется в Москве, выжидая его. Кутузов придумывал даже движение наполеоновской армии назад на Медынь и Юхнов, но одного, чего он не мог предвидеть, это того, что совершилось, того безумного, судорожного метания войска Наполеона в продолжение первых одиннадцати дней его выступления из Москвы, – метания, которое сделало возможным то, о чем все таки не смел еще тогда думать Кутузов: совершенное истребление французов. Донесения Дорохова о дивизии Брусье, известия от партизанов о бедствиях армии Наполеона, слухи о сборах к выступлению из Москвы – все подтверждало предположение, что французская армия разбита и сбирается бежать; но это были только предположения, казавшиеся важными для молодежи, но не для Кутузова. Он с своей шестидесятилетней опытностью знал, какой вес надо приписывать слухам, знал, как способны люди, желающие чего нибудь, группировать все известия так, что они как будто подтверждают желаемое, и знал, как в этом случае охотно упускают все противоречащее. И чем больше желал этого Кутузов, тем меньше он позволял себе этому верить. Вопрос этот занимал все его душевные силы. Все остальное было для него только привычным исполнением жизни. Таким привычным исполнением и подчинением жизни были его разговоры с штабными, письма к m me Stael, которые он писал из Тарутина, чтение романов, раздачи наград, переписка с Петербургом и т. п. Но погибель французов, предвиденная им одним, было его душевное, единственное желание.

В 1920 году физиком Отто Штерном (1888-1969) впервые были экспериментально определены скорости частиц вещества.

Прибор Штерна состоял из двух цилиндров разных радиусов, закрепленных на одной оси. Воздух из цилиндров был откачен до глубокого вакуума. Вдоль оси натягивалась платиновая нить, покрытая тонким слоем серебра. При пропускании по нити электрического тока она нагревалась до высокой температуры, и серебро с ее поверхности испарялось (рис. 1.7).

Рис. 1.7. Схема опыта Штерна.

В стенке внутреннего цилиндра была сделана узкая продольная щель, через которую проникали движущиеся атомы металла, осаждаясь на внутренней поверхности внешнего цилиндра, образуя хорошо наблюдаемую тонкую полоску прямо напротив прорези.

Цилиндры начинали вращать с постоянной угловой скоростью. Теперь атомы, прошедшие сквозь прорезь, оседали уже не прямо напротив щели, а смещались на некоторое расстояние, так как за время их полета внешний цилиндр успевал повернуться на некоторый угол (рис. 1.8). При вращении цилиндров с постоянной скоростью, положение полоски, образованной атомами на внешнем цилиндре, смещалось на некоторое расстояние.

Рис.1.8. 1 – Здесь оседают частицы, когда установка неподвижна. 2 – Здесь оседают частицы при вращении установки.

Зная величины радиусов цилиндров, скорость их вращения и величину смещения легко найти скорость движения атомов (рис. 1.9).

Время полета атома t от прорези до стенки внешнего цилиндра можно найти, разделив путь, пройденный атомом и равный разности радиусов цилиндров, на скорость атома v. За это время цилиндры повернулись на угол φ, величину которого найдем, умножив угловую скорость ω на время t. Зная величину угла поворота и радиус внешнего цилиндра R 2 , легко найти величину смещения l и получить выражение, из которого можно выразить скорость движения атома (1.34, d).

При температуре нити 1200 0 С среднее значение скорости атомов серебра, полученное после обработки результатов опытов Штерна, оказалось близким к 600 м/с, что вполне соответствует значению средней квадратичной скорости, вычисленному по формуле (1.28).

1.7.6. Уравнение состояния для газа Ван-дер Вальса.

Уравнение Клапейрона-Менделеева достаточно хорошо описывает газ при высоких температурах и низких давлениях, когда он находится в условиях достаточно далёких от условий конденсации. Однако для реального газа это не всегда выполняется и тогда приходится учитывать потенциальную энергию взаимодействия молекул газа между собой. Простейшим уравнением состояния, описывающим неидеальный газ, является уравнение, предложенное в 1873 г. Иоханнесом Дидериком Ван-дер-Ваальсом (1837 - 1923):


Пусть на молекулы газа действуют силы притяжения и отталкивания. И те, и другие силы действуют на небольших расстояниях, но силы притяжения убывают медленнее сил отталкивания. Силы притяжения относятся к взаимодействию молекулы с её ближайшим окружением, а сила отталкивания - проявляется в момент столкновения двух молекул. Силы притяжения внутри газа в среднем скомпенсированы для каждой отдельной молекулы. На молекулы, расположенные в тонком слое вблизи стенки сосуда, действует сила притяжения со стороны других молекул, направленная внутрь газа, которая создает давление, добавочное к создаваемому самой стенкой. Это давление иногда называют внутренним давлением . Суммарная сила внутреннего давления, действующая на элемент поверхностного слоя газа должна быть пропорциональна числу молекул газа в этом элементе и также числу молекул в слое газа, непосредственно примыкающему к рассматриваемому элементу поверхностного слоя. Толщина этих слоёв определяется радиусом действия сил притяжения и имеет тот же порядок величины. При увеличении концентрации молекул газа в раз, сила притяжения, приходящаяся на единицу площади приповерхностного слоя, возрастёт в раз. Поэтому величина внутреннего давления растёт пропорционально квадрату концентрации молекул газа. Тогда для суммарного давления внутри газа можно записать.

Понравилась статья? Поделиться с друзьями: