Секущая в параллелограмме. Вычисляем сумму углов и площадь параллелограмма: свойства и признаки

Одним из признаков параллелограмма является то, что если в четырехугольнике две стороны равны и параллельны, то такой четырехугольник является параллелограммом . То есть, если у четырехугольника две стороны равны и параллельны, то две другие стороны также оказываются равными между собой и параллельными друг другу, т. к. этот факт является определением и свойством параллелограмма.

Таким образом, параллелограмм можно определить лишь по двум сторонам, которые равны и параллельны друг другу.

Данный признак параллелограмма можно сформулировать как теорему и доказать. В таком случае нам дан четырехугольник, у которого две стороны равны и параллельны друг другу. Требуется доказать, что такой четырехугольник является параллелограммом (т. е. две его другие стороны равны и параллельны друг другу).

Пусть данный четырехугольник ABCD, и в нем стороны AB || CD и AB = CD.

По условию нам дан четырехугольник. Ничего не сказано о том, выпуклый он или нет (хотя параллелограммами могут быть только выпуклые четырехугольники). Однако даже в невыпуклом четырехугольнике всегда есть одна диагональ, которая делит его на два треугольника. Если это будет диагональ AC, то получим два треугольника ABC и ADC. Если это диагональ BD, то будут ∆ABD и ∆BCD.

Допустим, мы получили треугольники ABC и ADC. У них одна сторона общая (диагональ AC), сторона AB одного треугольника равна стороне CD другого (по условию), угол BAC равен углу ACD (как накрест лежащие между секущей и параллельными прямыми). Значит ∆ABC = ∆ADC по двум сторонам и углу между ними.

Из равенства треугольников следует, что их остальные стороны и углы соответственно равны. Но стороне BC треугольника ABC соответствует сторона AD треугольника ADC, значит, BC = AD. Углу B соответствует угол D, значит, ∠B = ∠D. Эти углы могут быть равны друг другу, если BC || AD (так как AB || CD, то эти прямые можно совместить параллельным переносом, тогда ∠B станут накрест лежащими ∠D, а их равенство может быть только при BC || AD).

По определению параллелограмма им является четырехугольник, у которого противоположные стороны равны и параллельны друг другу.

Таким образом было доказано, что если у четырехугольника ABCD стороны AB и CD равны и параллельны и диагональ AC делит его на два треугольника, то у него другая пара сторон оказывается равна друг другу и параллельна.

Если же четырехугольник ABCD был разделен на два треугольника другой диагональю (BD), то рассматривались бы треугольники ABD и BCD. Их равенство доказывалось бы аналогично предыдущему. Оказалось бы, что BC = AD и ∠A = ∠C, откуда следовало, что BC || AD.

Это четырёхугольник, противоположные стороны которого попарно параллельны.

Свойство 1 . Любая диагональ параллелограмма делит его на два равных треугольника.

Доказательство . По II признаку (накрест лежащие углы и общая сторона).

Теорема доказана .

Свойство 2 . В параллелограмме противолежащие стороны равны, противолежащие углы равны.

Доказательство .
Аналогично,

Теорема доказана .

Свойство 3. В параллелограмме диагонали точкой пересечения делятся пополам.

Доказательство .

Теорема доказана .

Свойство 4 . Биссектриса угла параллелограмма, пересекая противоположную сторону, делит его на равнобедренный треугольник и трапецию. (Ч. сл. - вершину - два равнобедренных?-ка).

Доказательство .

Теорема доказана .

Свойство 5 . В параллелограмме отрезок с концами на противоположных сторонах, проходящий через точку пересечения диагоналей, делится этой точкой пополам.

Доказательство .

Теорема доказана .

Свойство 6 . Угол между высотами, опущенными из вершины тупого угла параллелограмма, равен острому углу параллелограмма.

Доказательство .

Теорема доказана .

Свойство 7 . Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°.

Доказательство .

Теорема доказана .

Построение биссектрисы угла. Свойства биссектрисы угла треугольника.

1) Построить произвольный луч DE.

2) На данном луче построить произвольную окружность с центром в вершине и такую же
с центром в начале построенного луча.

3) F и G - точки пересечения окружности со сторонами данного угла, H - точка пересечения окружности с построенным лучом

Построить окружность с центром в точке H и радиусом, равным FG.

5) I - точка пересечения окружностей построенного луча.

6) Провести прямую через вершину и I.

IDH - требуемый угол.
)

Свойство 1 . Биссектриса угла треугольника разбивает противоположную сторону пропорционально прилежащим сторонам.

Доказательство . Пусть x, y-отрезки стороны c. Продолжим луч BC. На луче BC отложим от C отрезок CK, равный AC.

Параллелограмм - это четырехугольник, у которого противоположные стороны попарно параллельны. На следующем рисунке представлен параллелограмм ABCD. У него сторона AB параллельна стороне CD, а сторона BC параллельна стороне AD.

Как вы уже успели догадаться, параллелограмм является выпуклым четырехугольником. Рассмотрим основные свойства параллелограмма.

Свойства параллелограмма

1. В параллелограмме противоположные углы и противоположные стороны равны. Докажем это свойство - рассмотрим параллелограмм, представленный на следующем рисунке.

Диагональ BD разделяет его на два равных треугольника: ABD и CBD. Они равны по стороне BD и двум прилежащим к ней углам, так как углы накрест лежащие при секущей BD параллельных прямых BC и AD и AB и CD соответственно. Следовательно, AB = CD и
BC = AD. А из равенства углов 1, 2 ,3 и 4 следует, что угол A = угол1 +угол3 = угол2 + угол4 = угол С.

2. Диагонали параллелограмма точкой пересечения делятся пополам. Пусть точка О есть точка пересечения диагоналей AC и BD параллелограмма ABCD.

Тогда треугольник AOB и треугольник COD равны между собой, по стороне и двум прилежащим к ней углам. (AB=CD так как это противоположные стороны параллелограмма. А угол1 = угол2 и угол3 = угол4 как накрест лежащие углы при пересечении прямых AB и CD секущими AC и BD соответственно.) Из этого следует, что AO = OC и OB = OD, что и требовалось доказать.

Все основные свойства проиллюстрированы на следующих трех рисунках.

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

Понравилась статья? Поделиться с друзьями: