Найти синус угла между прямой и плоскостью. Угол между прямой и плоскостью: определение, примеры нахождения

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

Пусть задана некоторая прямоугольная система координат и прямая. Пустьи две различные плоскости, пересекающиеся по прямой и задаваемые соответственно уравнениямии. Эти два уравнения совместно определяют прямуюв том и только в том случае, когда они не параллельны и не совпадают друг с другом, т. е. нормальные векторы
и
этих плоскостей не коллинеарны.

Определение. Есликоэффициенты уравнений

не пропорциональны, то эти уравнения называются общими уравнениями прямой, определяемой как линия пересечения плоскостей.

Определение. Любой ненулевой вектор, параллельный прямой, называется направляющим вектором этой прямой.

Выведем уравнение прямой , проходящей через данную точку
пространства и имеющей заданный направляющий вектор
.

Пусть точка
 произвольная точка прямой . Эта точка лежит на прямой тогда и только тогда, когда вектор
, имеющий координаты
, коллинеарен направляющему вектору
прямой. Согласно (2.28) условие коллинеарности векторов
иимеет вид

. (3.18)

Уравнения (3.18) называются каноническими уравнениями прямой, проходящей через точку
и имеющей направляющий вектор
.

Если прямая задана общими уравнениями (3.17), то направляющий векторэтой прямой ортогонален нормальным векторам
и
плоскостей, задаваемых уравнениямии. Вектор
по свойству векторного произведения ортогонален каждому из векторови. Согласно определению в качестве направляющего векторапрямойможно взять вектор
, т. е.
.

Для нахождения точки
рассмотрим систему уравнений
. Так как плоскости, определяемые уравнениямии, не параллельны и не совпадают, то не выполняется хотя бы одно из равенств
. Это приводит к тому, что хотя бы один из определителей,
,
отличен от нуля. Для определенности будем считать, что
. Тогда, взяв произвольное значение, получим систему уравнений относительно неизвестныхи:

.

По теореме Крамера эта система имеет единственное решение, определяемое формулами

,
. (3.19)

Если взять
, то прямая, задаваемая уравнениями (3.17), проходит через точку
.

Таким образом, для случая, когда
, канонические уравнения прямой (3.17) имеют вид

.

Аналогично записываются канонические уравнения прямой (3.17) для случая, когда отличен от нуля определитель
или
.

Если прямая проходит через две различные точки
и
, то ее канонические уравнения имеют вид

. (3.20)

Это следует из того, что прямая проходит через точку
и имеет направляющий вектор.

Рассмотрим канонические уравнения (3.18) прямой. Примем каждое из отношений за параметр , т. е.
. Один из знаменателей этих дробей отличен от нуля, а соответствующий числитель может принимать любые значения, поэтому параметрможет принимать любые вещественные значения. Учитывая, что каждое из отношений равно, получимпараметрические уравнения прямой:

,
,
. (3.21)

Пусть плоскость задана общим уравнением, а прямая параметрическими уравнениями
,
,
. Точка
пересечения прямойи плоскостидолжна одновременно принадлежать плоскости и прямой. Это возможно только в том случае, когда параметрудовлетворяет уравнению, т. е.
. Таким образом, точка пересечения прямой и плоскости имеет координаты

,

,

.

П р и м е р 32. Составить параметрические уравнения прямой, проходящей через точки
и
.

Решение. За направляющий вектор прямой возьмем вектор

. Прямая проходит через точку, поэтому по формуле (3.21) искомые уравнения прямой имеют вид
,
,
.

П р и м е р 33. Вершины треугольника
имеют координаты
,
и
соответственно. Составить параметрические уравнения медианы, проведенной из вершины.

Решение. Пусть
 середина стороны
, тогда
,
,
. В качестве направляющего вектора медианы возьмем вектор
. Тогда параметрические уравнения медианы имеют вид
,
,
.

П р и м е р 34. Составить канонические уравнения прямой, проходящей через точку
параллельно прямой
.

Решение. Прямая задана как линия пересечения плоскостей с нормальными векторами
и
. В качестве направляющего вектораэтой прямой возьмем вектор
, т. е.
. Согласно (3.18) искомое уравнение имеет вид
или
.

3.8. Угол между прямыми в пространстве. Угол между прямой и плоскостью

Пусть две прямые ив пространстве заданы своими каноническими уравнениями
и
. Тогда один из угловмежду этими прямыми равен углу между их направляющими векторами
и
. Воспользовавшись формулой (2.22), для определения углаполучим формулу

. (3.22)

Второй угол между этими прямыми равен
и
.

Условие параллельности прямых иравносильно условию коллинеарности векторов
и
и заключается в пропорциональности их координат, т. е. условие параллельности прямых имеет вид

. (3.23)

Если прямые иперпендикулярны, то их направляющие векторы ортогональны, т.е. условие перпендикулярности определяется равенством

. (3.24)

Рассмотрим плоскость , заданную общим уравнением, и прямую, заданную каноническими уравнениями
.

Угол между прямойи плоскостьюявляется дополнительным к углумежду направляющим вектором прямой и нормальным вектором плоскости, т. е.
и
, или

. (3.24)

Условие параллельности прямой и плоскостиэквивалентно условию перпендикулярности направляющего вектора прямой и нормального вектора плоскости, т. е. скалярное произведение этих векторов должно равняться нулю:

Если же прямая перпендикулярна плоскости, то направляющий вектор прямой и нормальный вектор плоскости должны быть коллинеарны. В этом случае координаты векторов пропорциональны, т. е.

. (3.26)

П р и м е р 35. Найти тупой угол между прямыми
,
,
и
,
,
.

Решение. Направляющие векторы этих прямых имеют координаты
и
. Поэтому один уголмежду прямыми определяется соотношением, т. е.
. Поэтому условию задачи удовлетворяет второй угол между прямыми, равный
.

3.9. Расстояние от точки до прямой в пространстве

Пусть
 точка пространства с координатами
, прямая, заданная каноническими уравнениями
. Найдем расстояниеот точки
до прямой.

Приложим направляющий вектор
к точке
. Расстояниеот точки
до прямойявляется высотой параллелограмма, построенного на векторахи
. Найдем площадь параллелограмма, используя векторное произведение:

С другой стороны, . Из равенства правых частей двух последних соотношений следует, что

. (3.27)

3.10. Эллипсоид

Определение. Эллипсоидом называется поверхность второго порядка, которая в некоторой системе координат определяется уравнением

. (3.28)

Уравнение (3.28) называется каноническим уравнением эллипсоида.

Из уравнения (3.28) следует, что координатные плоскости являются плоскостями симметрии эллипсоида, а начало координат  центром симметрии. Числа
называются полуосями эллипсоида и представляют собой длины отрезков от начала координат до пересечения эллипсоида с осями координат. Эллипсоид представляет собой ограниченную поверхность, заключенную в параллелепипеде
,
,
.

Установим геометрический вид эллипсоида. Для этого выясним форму линий пересечения его плоскостями, параллельными координатным осям.

Для определенности рассмотрим линии пересечения эллипсоида с плоскостями
, параллельными плоскости
. Уравнение проекции линии пересечения на плоскость
получается из (3.28), если в нем положить
. Уравнение этой проекции имеет вид

. (3.29)

Если
, то (3.29) является уравнением мнимого эллипса и точек пересечения эллипсоида с плоскостью
нет. Отсюда и следует, что
. Если
, то линия (3.29) вырождается в точки, т. е. плоскости
касаются эллипсоида в точках
и
. Если
, то
и можно ввести обозначения

,
. (3.30)

Тогда уравнение (3.29) принимает вид

, (3.31)

т. е. проекция на плоскость
линии пересечения эллипсоида и плоскости
представляет собой эллипс с полуосями, которые определяются равенствами (3.30). Так как линия пересечения поверхности плоскостями, параллельными координатным, представляет собой проекцию, «поднятую» на высоту, то и сама линия пересечения является эллипсом.

При уменьшении значенияполуосииувеличиваются и достигают своего наибольшего значения при
, т. е. в сечении эллипсоида координатной плоскостью
получается самый большой эллипс с полуосями
и
.

Представление об эллипсоиде можно получить и другим образом. Рассмотрим на плоскости
семейство эллипсов (3.31) с полуосямии, определяемыми соотношениями (3.30) и зависящими от. Каждый такой эллипс является линией уровня, т. е. линией, в каждой точке которой значениеодинаково. «Подняв» каждый такой эллипс на высоту, получим пространственный вид эллипсоида.

Аналогичная картина получается и при пересечении данной поверхности плоскостями, параллельными координатным плоскостям
и
.

Таким образом, эллипсоид представляет собой замкнутую эллиптическую поверхность. В случае
эллипсоид является сферой.

Линия пересечения эллипсоида с любой плоскостью является эллипсом, так как такая линия представляет собой ограниченную линию второго порядка, а единственная ограниченная линия второго порядка  эллипс.

Понятие проекции фигуры на плоскость

Для введения понятия угла между прямой и плоскостью вначале необходимо разобраться в таком понятии, как проекция произвольной фигуры на плоскость.

Определение 1

Пусть нам дана произвольная точка $A$. Точка $A_1$ называется проекцией точки $A$ на плоскость $\alpha $, если она является основанием перпендикуляра, проведенного из точки $A$ на плоскость $\alpha $ (рис. 1).

Рисунок 1. Проекция точки на плоскость

Определение 2

Пусть нам дана произвольная фигура $F$. Фигура $F_1$ называется проекцией фигуры $F$ на плоскость $\alpha $, составленная из проекций всех точек фигуры $F$ на плоскость $\alpha $ (рис. 2).

Рисунок 2. Проекция фигуры на плоскость

Теорема 1

Проекция не перпендикулярной плоскости прямой является прямая.

Доказательство.

Пусть нам дана плоскость $\alpha $ и пересекающая ее прямая $d$, не перпендикулярная ей. Выберем на прямой $d$ точку $M$ и проведем её проекцию $H$ на плоскость $\alpha $. Через прямую $(MH)$ проведем плоскость $\beta $. Очевидно, что эта плоскость будет перпендикулярна плоскости $\alpha $. Пусть они пересекаются по прямой $m$. Рассмотрим произвольную точку $M_1$ прямой $d$ и проведем через нее прямую $(M_1H_1$) параллельно прямой $(MH)$ (рис. 3).

Рисунок 3.

Так как плоскость $\beta $ перпендикулярна плоскости $\alpha $, то $M_1H_1$ перпендикулярно прямой $m$, то есть точка $H_1$ - проекция точки $M_1$ на плоскость $\alpha $. В силу произвольности выбора точки $M_1$ все точки прямой $d$ проецируются на прямую $m$.

Рассуждая аналогично. В обратном порядке, будем получать, что каждая точка прямой $m$ является проекцией какой-либо точки прямой $d$.

Значит, прямая $d$ проецируется на прямую $m$.

Теорема доказана.

Понятие угла между прямой и плоскостью

Определение 3

Угол между прямой, пересекающей плоскость и её проекцией на эту плоскость, называется углом между прямой и плоскостью (рис. 4).

Рисунок 4. Угол между прямой и плоскостью

Отметим здесь несколько замечаний.

Замечание 1

Если прямая перпендикулярна к плоскости. То угол между прямой и плоскостью равен $90^\circ$.

Замечание 2

Если прямая параллельна или лежит в плоскости. То угол между прямой и плоскостью равен $0^\circ$.

Примеры задач

Пример 1

Пусть нам дан параллелограмм $ABCD$ и точка $M$, не лежащая в плоскости параллелограмма. Доказать, что треугольники $AMB$ и $MBC$ являются прямоугольными, если точка $B$ -- проекция точки $M$ на плоскость параллелограмма.

Доказательство.

Изобразим условие задачи на рисунке (рис. 5).

Рисунок 5.

Так как точка $B$ -- проекция точки $M$ на плоскость $(ABC)$, то прямая $(MB)$ перпендикулярна плоскости $(ABC)$. По замечанию 1, получаем, что угол между прямой $(MB)$ и плоскостью $(ABC)$ равен $90^\circ$. Следовательно

\[\angle MBC=MBA={90}^0\]

Значит, треугольники $AMB$ и $MBC$ являются прямоугольными.

Пример 2

Дана плоскость $\alpha $. Под углом $\varphi $ к этой плоскости проведен отрезок, начало которого лежит в данной плоскости. Проекция этого отрезка в два раза меньше самого отрезка. Найти величину $\varphi $.

Решение.

Рассмотрим рисунок 6.

Рисунок 6.

По условию, имеем

Так как треугольник $BCD$ прямоугольный, то, по определению косинуса

\ \[\varphi =arccos\frac{1}{2}={60}^0\]

На понятии проекции наклонной основано определение угла между прямой и плоскостью. Определение. Углом между прямой линией и плоскостью называется угол между этой прямой и ее проекцией на данную плоскость.

На рис. 341 изображен угол а между наклонной AM и ее проекцией на плоскость К.

Примечание. Если прямая параллельна плоскости или лежит в ней, то угол ее с плоскостью считается равным нулю. Если она перпендикулярна к плоскости, то угол объявляется прямым (предыдущее определение здесь в буквальном смысле неприменимо!). В остальных случаях подразумевается острый угол между прямой и ее проекцией. Поэтому угол между прямой и плоскостью никогда не превышает прямого. Еще заметим, что здесь вернее говорить о мере угла, а не об угле (действительно, речь идет о мере наклона прямой к плоскости, понятие же угла как плоской фигуры, ограниченной двумя лучами, не имеет сюда прямого отношения).

Убедимся еще в одном свойстве острого угла между прямой линией и плоскостью.

Из всех углов, образованных данной прямой и всевозможными прямыми в плоскости, угол с проекцией данной прямой наименьший.

Доказательство. Обратимся к рис. 342. Пусть а - данная прямая, - ее проекция на плоскость - произвольная другая прямая в плоскости К (мы провели ее для удобства через точку А пересечения прямой а с плоскостью ). Отложим на прямой отрезок т. е. равный основанию наклонной МА, где проекция одной из точек наклонной а.

Тогда в треугольниках две стороны равны: сторона AM общая, равны по построению. Но третья сторона в треугольнике больше третьей стороны в треугольнике (наклонная больше перпендикуляра). Значит, и противолежащий угол в больше соответствующего угла а в (см. п. 217): , что и требовалось доказать.

Угол между прямой и плоскостью - это наименьший из углов между данной прямой и всевозможными прямыми в плоскости.

Справедлива и такая

Теорема. Острый угол между прямой, лежащей в плоскости, и проекцией наклонной на эту плоскость меньше угла между этой прямой и самой наклонной.

Доказательство. Пусть - прямая, лежащая в плоскости (рис. 342), а - наклонная к плоскости, т - ее проекция на плоскость. Будем рассматривать прямую как наклонную к плоскости тогда будет ее проекцией на указанную плоскость и по предыдущему свойству найдем: что и требовалось доказать. По теореме о трех перпендикулярах видно, что в случае, когда прямая в плоскости перпендикулярна к, проекции наклонной (случай не острого, а прямого угла), прямая также перпендикулярна и к самой наклонной; в этом случае оба угла, о которых мы говорим, прямые и потому равны между собой.

Понравилась статья? Поделиться с друзьями: