Изобретение шрапнель. Шрапнель - что это такое? Артиллерийский снаряд

АЛ. Платонов, Ю.И. Сагун, П.Ю. Билинкевич, И.В. Парфенцев


Вверху: граната и шрапнель (у солдата справа) к 6-дм полевой мортире обр. 1885 г., активно применявшейся в ходе русско-японской войны.

«Все-таки этот капитан Шрапнель –
редкая сволочь.
Одним его «стаканом»
можно уложить целый взвод.
Конечно, мы и под шрапнелью
научились наступать,
но уж очень это муторно».
А. В, Шмалько «Флегетон»

Генри Шрапнель.


В литературе, посвященной войнам XIX и XX веков, довольно часто при описании действий артиллерии упоминается один из видов артиллерийских боеприпасов – шрапнель. Так что же это за снаряд и почему удостоился столь грозной славы?

«Российский энциклопедический словарь» лаконично определяет: «Шрапнель (англ. shrapnel), артиллерийский снаряд, корпус которого заполнялся сферическими пулями (стержнями, стрелами и т.д.), поражавшими открытые живые цели. Разрывался в заданной точке траектории; применялся в XIXи начале XXвв., вытеснен осколочными и осколочно-фугасными снарядами». В этой статье сделана попытка обобщить основные данные, касающиеся конструкции и использования шрапнелей.

В любой период развития вооруженных сил преследовались цели повышения эффективности стрельбы, в частности, непосредственно к артиллерии предъявлялись требования по нанесению максимального ущерба противнику, что во многом зависит от артиллерийских снарядов.

Часто упоминаемый «Устав ратных, пушечных и других дел, касающихся до военной науки», вышедший в России в 1621 г. и составленный Они-симом Михайловым, хорошо знавшим предмет, содержал 663 «указа», в которых довольно подробно освещались вопросы состояния, организации и боевого использования артиллерии. В этом труде содержалось много оригинальных мыслей. Так, в «указе 364» говорилось о снаряжении снарядов порохом и «грановитым железным дробом» – «по горсти дроба на фунт пороха». По видимому, здесь шла речь о прототипе картечной гранаты или шрапнельного снаряда. Однако история отдала первенство в изобретении шрапнельного артиллерийского снаряда конкретному человеку.

Генри Шрапнель родился 3 июня 1761 г. в Брэдфорде-Эйвоне графство Уилтшир на юге Англии. Как и многие его сверстники, Шрапнель получил военное образование и посвятил себя службе в Британской армии. Он окончил военное училище в чине лейтенанта Королевской артиллерии.

В этот период артиллерийские орудия были преимущественно дуль-нозарядными, с гладким каналом ствола и использовали в основном следующие боеприпасы: сплошные чугунные ядра; чугунные сферические пороховые снаряды, начиненные черным дымным ружейным порохом

(в русской артиллерии такие боеприпасы массой до пуда, т.е. 16,38 кг, именовались «гранатами», а более пуда – «бомбами»); картечь. Прекрасно зная устройство и особенности действия этих боеприпасов, в 1784 г. Шрапнель предложил усовершенствовать гранаты и бомбы путем размещения внутри их корпусов сферических пуль вперемешку с навеской пороха. Использовать такой боеприпас предполагалось в основном по боевым порядкам конницы и пехоты. Британское военное ведомство приняло предложенный боеприпас на вооружение только в ноябре 1803 г. Переход от «линейной» к «перпендикулярной» тактике, к действиям на поле боя глубоких батальонных колонн делал такие снаряды весьма актуальными.

В апреле 1804 г. англичане впервые использовали шрапнельные снаряды в боях против голландцев в Суринаме (Южная Америка). Эффект был ощутимым. Голландцы понесли весьма серьезные потери.


Сферические снаряды гладкоствольной артиллерии: а) Шрапнеля; б) Боксера. Деревянная шайба (Шпигель) обеспечивала направление полета снаряда трубкой вперед.


21 августа 1808 г. произошло Веймарское сражение (Португалия), где англичане применили против французских войск сферические снаряды конструкции Шрапнеля, что привело к значительным потерям французов в живой силе. Начиная с этого момента сферические снаряды, начиненные пулями и порохом, с пороховой трубкой стали использоваться англичанами практически во всех сражениях эпохи наполеоновских войн. Некоторые историки, изучающие поражение Наполеоновской армии в битве под Ватерлоу, среди прочих факторов поражения называют применение англичанами шрапнельных снарядов.

К 1830-м гг. в Англии шрапнель становится главным снарядом. Для обеспечения дистанционного действия такого снаряда на траектории применялись трубки с различным количеством пороха, что изменяло продолжительность горения порохового состава и определяло время срабатывания разрывного заряда из черного дымного пороха. Надежность функционирования таких трубок была крайне низкой: нередко артиллеристы отказывались использовать такой боеприпас в бою. Но несмотря на то, что снаряды были еще далеки от совершенства, их разработка и применение стали настоящим прорывом в развитии боеприпасов, что позволяло артиллерии решать огневые задачи на поле боя более эффективно.

Генри Шрапнель был изобретателем и работал над многими проблемами артиллерии, при этом часто затрачивая собственные средства. Службу он закончил в 1837 г. и ушел в отставку в чине генерал-лейтенанта Королевской артиллерии. Скончался Генри Шрапнель 13 марта 1842 г. Спустя десять лет после его кончины родственники обратились к английскому правительству с просьбой увековечить память о Шрапнеле. С этого момента и до наших дней снаряды, наполненные сферическими пулями, а позднее стержнями, призмами и т.п. стали официально именоваться « шрапнелями ».

Во многих развитых странах мира были сделаны соответствующие выводы, что в дальнейшем сказалось на построении боевого порядка и на тактике действий воюющих сторон. Многие разработчики боеприпасов в конструкцию шрапнели и взрывателей к ней вносили свои доработки, добиваясь повышения эффективности и увеличения номенклатуры поражаемых целей.

В России были созданы и в 1840 г. введены для орудий «системы 1838 г.» так называемые картечные гранаты и бомбы, представляющие собой тот же сферический снаряд конструкции Шрапнеля.

В 1852-1855 гг. другой английский артиллерист, Боксер,разработал первую удлиненную диафрагмен-ную шрапнель длиной в 2,6 калибра с прямой трубкой, имевшей два параллельных канала и воспламенявшей боевой заряд от газов. Трубка допускала установку на несколько дистанций. Диафрагма обеспечивала направление разлета пуль и предотвращала преждевременный разрыв заряда от нагрева.

В 1860-х гг. для оснащения картечных гранат внедрили столбиковую дистанционную трубку. Такая трубка имела головку с четырьмя запальными каналами и корпус с четырьмя продольными каналами и петардой. Продольные каналы набивались порохом на разную длину, что обеспечивало время горения соответственно дистанциям 500, 800, 1000 и 1200 м. Выходные отверстия продольных каналов замазывались мастикой. Перед выстрелом вынимали пробку из запального канала и удаляли мастику долотом из выходного отверстия того канала, время горения которого соответствовало требуемой дальности стрельбы.


Столбиковая дистанционная трубка.


В середине XIX века закончилась эпоха гладкоствольной артиллерии, так как она уже не могла соответствовать новым требованиям развития военной техники.

В России при переходе с гладкоствольных артиллерийских систем на нарезные первыми серийными пушками, принятыми на вооружение приказом по артиллерии № 128 от 10 августа 1860 г., стали 4-фн нарезные орудия по «французской системе» (французы приняли такие орудия в 1858 г.), заряжаемые с дула. В боекомплекте этих орудий предусматривались три типа продолговатых снарядов: чугунная граната, шрапнель и картечь. Особенностью конструкции снарядов, в том числе и шрапнельных, было использование 12 цинковых выступов (в официальных документацах 1850- 1860-х гг. их именовали «крылья» или «шипы»), размещенных в два ряда на продолговатой части снаряда.


Продолговатый снаряд с готовыми выступами для дульнозарядных нарезных орудий.


Передние шесть выступов были ведущими, упирались в боевую наклонную грань и предназначались для сообщения снаряду вращательного движения. Задний ряд выступов служил для центрования снаряда в канале ствола. Масса шрапнельного снаряда составляла 6,14 кг, он вмещал 85 г ВВ и 62 пули массой 23 г и диаметром 16 мм каждая. Для обеспечения дистанционного действия шрапнельный снаряд комплектовался 7,5-с трубкой. Метательный заряд в виде навески пороха в 614 г обеспечивал дальность стрельбы шрапнельными пулями порядка 533 м.

Нарезные орудия, заряжаемые с дула, обладали таким серьезным недостатком, как прорыв пороховых газов через зазоры между поверхностью снаряда и поверхностью канала ствола. Это приводило к снижению полезной работы пороховых газов и к неудовлетворительной кучности боя. Перечисленные выше причины, а также другие эксплуатационные характеристики постоянно заставляли искать иное решение, что и привело к разработке и повсеместному принятию на вооружение артиллерийских систем, заряжаемых с казенной части.




В период с 1865 по 1877 г. в России последовательно принимаются на вооружение казнозарядные артиллерийские системы – орудия обр. 1867 г. (т.е. с каналом ствола обр. 1867 г.) и орудия обр. 1877 г. Все полевые орудия обр. 1867 г. имели горизонтальный клиновой затвор и предназначались для стрельбы снарядом со свинцовой оболочкой. Для указанных орудий всех калибров от 2,5 до 6 дюймов включительно применялись два вида шрапнелей: с центральной каморой и с диафрагмой. Общее количество пуль, помещаемых в диафрагменную шрапнель, было больше, чем в шрапнель с центральной каморой.

Шрапнель с диафрагмой состояла из чугунного корпуса, на котором снаружи в продольных и поперечных желобках была укреплена свинцовая оболочка. На внутренней поверхности корпуса снаряда делали круглые углубления, предназначавшиеся для обеспечения более плотного прилегания сферических пуль к стенкам. Для этой же цели на внутренней поверхности иногда выполняли про дольные винтообразные желобки. Камора для вышибного заряда располагалась в донной части снаряда. Для отделения вышибного заряда от пуль служила диафрагма, а для передачи огня от дистанционной трубки к вышибному заряду – центральная железная трубка.


Шрапнель: а) с центральной каморой; б) с донной каморой и диафрагмой.


К корпусу снаряда винтами прикреплялась головка из желтой меди. При снаряжении пули насыпали через головное очко или специальное отверстие в головке, тщательно их встряхивали и заливали серой. Такая конструкция снаряда, именовавшегося «первый совершенный образец шрапнели», была разработана генералом русской армии В.Н. Шкларевичем.

Оба вида шрапнели предназначались для поражения пехоты и кавалерии. В действии снарядов по цели имелись различия: по открытым целям предпочтительно было использовать диафрагменную шрапнель, а по закрытым спереди – шрапнель с центральной каморой. Так, удиафрагмен-ной шрапнели после срабатывания дистанционной трубки луч огня передавался на вышибной заряд, что приводило к воспламенению пороха. Силой давления пороховых газов от вышибного заряда, передаваемой через диафрагму, происходил срыв (срез) резьбы при-винтной головки и выбрасывание пуль вперед, при этом корпус снаряда оставался целым.

В шрапнели с центральной каморой луч огня от дистанционной трубки воспламенял порох, в результате работы пороховых газов корпус шрапнели разрывался на осколки, которые вместе с пулями поражали цель сверху.

Русские артиллеристы использовали такие шрапнельные снаряды в период русско-турецкой войны 1877-1878 гг. – в основном с орудиями обр. 1867 г. Характерно, что в 1878 г. русские заводы, производившие снаряды, получили заказ на 791 тыс. гранат, 690 тыс. шрапнелей, 54150 картечей. Боекомплект орудий обр. 1877 г. (легкие и конные, горные, батарейные орудия) должен был включать 50% гранат с ударной трубкой и 50% шрапнелей и картечи.

В боекомплект 2,5-дюймовой горной пушки обр. 1885 г. вошел шрапнельный снаряд со стальным корпусом, стенки которого были значительно тоньше, чем у шрапнели с чугунным корпусом. Соответственно, в стальной корпус помещалось большее количество пуль.

В связи с принятием на вооружение «дальнобойных» орудий обр. 1877 г. со стальными стволами и прогрессивной крутизной нарезов, угол наклона которых постепенно увеличивался от казенной части ствола к дульной, полковник Бабушкин предложил усовершенствованный вариант шрапнели «первого образца». Корпус шрапнели был снабжен медным ведущим пояском, расположенным в донной части, и медным центрующим пояском, запрессованным в канавку в основание оживальной головной части. К тому же, снаряды стали длиннее, большего могущества.


Усовершенствованная конструкция шрапнели «первого образца».


Однако канавка ослабляла головную часть снаряда, особенно бронебойного. В дальнейшем от нее отказались и перешли к кольцевому центрующему утолщению, которое изготавливали за одно целое с корпусом снаряда. Конструкция корпуса артиллерийского снаряда с медным ведущим пояском и центрующем утолщением сохранилась, в основном, и до нашего времени.

Конец XIX и начало XX века в развитии мировой и отечественной артиллерии характеризовались разработкой и принятием на вооружение скорострельных орудий с «упругим лафетом». Так, в России после продолжительного периода испытаний 9 февраля 1900 г. была принята на вооружение «3-дм полевая пушка обр. 1900 г.» с поршневым затвором. В этом же году пушка получила боевое крещение при ведении боевых действий в Китае. В конструктивном решении 76-мм пушка обр. 1900 г. представляла собой резкий качественный скачок по сравнению с полевыми пушками обр. 1877 г. Однако это орудие имело ряд существенных недостатков, которые необходимо было устранить. Поэтому вскоре, а именно 19 марта 1903 г., высочайшим повелением на вооружение поступила новая пушка с лафетом с люлькой под наименованием «3-дм полевая пушка обр. 1902 г.». Для указанных выше орудий был принят единственный снаряд – шрапнель.

В этот период шрапнельные снаряды комплектовались (окончательно снаряжались) дистанционными трубками. В русской артиллерии трубка с дистанционным кольцом была принята в 1873 г. Однако в 1880-е гг. ее пришлось заменить более надежными трубками по образцу крупповских, к тому же 12-секундными – в соответствии с увеличением дальности стрельбы систем 1877 г. 76-мм шрапнельные снаряды вначале оснащались 22-секундной трубкой двойного действия, которая имела дистанционное и ударное действие, т.е. обеспечивала разрыв шрапнельного снаряда в воздухе перед целью и при ударе о преграду соответственно.

Необходимо отметить, что ударное действие трубки в соответствии с руководящими документами того времени считалось вспомогательным и должно было облегчать пристрелку целей (чему способствовало и введение в шрапнель дымового состава, делавшего разрыв хорошо наблюдаемым).

Конструктивно ударный механизм помещался в хвосте трубки, а дистанционный – в ее головной части, при этом они функционировали независимо друг от друга. Дистанционный механизм состоял из воспламенитель-ного механизма и двух дистанционных колец, из которых верхнее закреплялось неподвижно, а нижнее могло вращаться.

До Первой мировой войны шкалу на наружной поверхности нижнего дистанционного кольца трубки наносили путем накатки в линейных мерах, в соответствии с делениями прицела 3-дюймовых пушек. В дальнейшем, уже во время Первой мировой войны, накатка делений производилась в угловых мерах. Кроме того, на нижнем кольце наносились две риски с надписями: «УД» -для установки трубки на ударное действие и «К» – для установки на картечь (промышленностью выпускались трубки с заводской установкой на картечь). Для установки 22-с трубки на любое деление требовалось свинтить предохранительный колпак, а затем ключом повернуть нижнее дистанционное кольцо до совмещения требуемого деления (согласно Таблицам стрельбы) с риской на корпусе трубке.


Общий вид и схема устройства 76-мм пулевой шрапнели Ш-354Т.


По состоянию на 1 января 1904 г., на одну 3-дм пушку полагалось иметь 660 шрапнелей. О соотношении шрапнельных и фугасных снарядов в русской артиллерии в целом можно судить по тому, что с 1898 по 1901 г. на уральских горных заводах, например, по заказам Военного министерства было произведено 24930 бомб и 336991 шрапнель. Характерно, что в это время идея шрапнели стала основой и для другого типа боеприпасов – противопехотных мин. Пример тому – шрапнельный фугас штабс-капитана Карасева с вышибным зарядом и шрапнельными пулями, применявшийся при обороне Порт-Артура.

По мнению ГАУ русского Военного министерства, шрапнельный снаряд должен был обеспечить выполнение всех огневых задач, решаемых полевой артиллерией. Тут сказалась и малая действенность пороховых гранат против земляных укреплений, проявившаяся в русско-турецкую войну 1877-1878 гг., и технологические проблемы при внедрении в артиллерию новых бризантных взрывчатых веществ, что не позволяло оценить могущество фугасных гранат и бомб при снаряжении новыми ВВ. Однако история довольно быстро и неоднократно подтвердила пагубность такого мнения – сначала во время Русско-японской войны 1904-1905 гг., а затем и в Первую мировую войну 1914- 1918 гг. Хотя капитан А. Нилус еще в 1892 г. писал: «Шрапнель (картечная граната) может быть, бесспорно, признана королевою между снарядами; при действии по живым целям – она незаменима, но при действии по закрытым целям и постройкам слаба».


Схема устройства 22-секундной трубки двойного действия.


Русские ученые основательно и весьма плодотворно занимались исследованием свойств шрапнели. Среди них необходимо выделить В.М. Трофимова, опубликовавшего в 1903 г. научный труд «Действие шрапнели при стрельбе из 3-дюймовой полевой пушки». В результате тщательно проведенных опытов Трофимов получил возможность определить скорость, сообщаемую пулям вышибным зарядом, пробивную способность пули, угол разлета, закон распределения пуль, число полезных попаданий, а также влияние внутреннего устройства шрапнели на распределение пуль в конусе.

Во время Русско-японской войны 1904-1905 гг. русские артиллеристы шрапнельными снарядами наносили серьезный урон противнику на открытых пространствах, но при укрытии живой силы в окопах или простейших строениях эффект от шрапнельных пуль был ничтожным. Из-за тонких стенок корпуса и ослабленной головной части шрапнель не обладала ударным действием, а небольшой пороховой заряд обеспечивал слабое фугасное действие. Вместе с тем, умелое применение шрапнели вынудило японское командование вести наступления в ночное время или на рассвете, а при дневных операциях усиленно применять самоокапывание, чтобы избежать губительного действия русской шрапнели. Огонь скорострельных магазинных винтовок и еще сравнительно редких пулеметов также заставлял пехоту шире использовать укрытия и разрежать ряды при атаке. Действенность шрапнели уменьшило и введение щитов для орудий полевой артиллерии и пулеметов. Попытки увеличить пробивное действие шрапнельных пуль заменой свинца сталью не увенчались успехом: либо масса пуль оказывалась недостаточной, либо нужно было уменьшать их количество в снаряде.

Известный советский военный историк Л.Г. Бескровный на основе документов русского Военного ведомства приводит такие цифры: в 1904-1905 г. казенными и частными военными заводами для легкой полевой артиллерии было изготовлено 247000 легких шрапнелей (к легким полевым пушкам), 317800 легких гранат и 45590 мелинитовых гранат. То есть война вызвала рост спроса именно на гранаты.

После Русско-японской войны военное руководство России провело анализ боевого применения артиллерии в части изменения тактики боя, а также использования артиллерии для борьбы с полевыми фортификационными сооружениями и сделало определенные выводы. В результате, в 1908 г. в состав боекомплекта полевых орудий были включены осколочные и фугасные гранаты. Однако большую часть по-прежнему занимала шрапнель. Бывший руководитель ГАУ Е.3. Барсуков указывает такие соотношения: в боевом комплекте пушек 1/7 в мелинитовых гранатах, 6/7 в шрапнелях, а в боевых комплектах гаубиц – 2/3 в мелинитовых гранатах, 1/3 в шрапнелях. В «Артиллерийском журнале» в 1906 г. отмечалось, что «количество гранат в различных государствах колеблется между 1/9 и 1/4 общего числа снарядов »и признавал: «Без гранаты тоже очень трудно обойтись». Так что русская артиллерия в этом отношении не выбивалась из общих рамок.

Рассмотрим действие шрапнели у цели. В целом оно зависит:

– от скорости шрапнели в момент разрыва;

– от дополнительной скорости, сообщаемой пулям вышибным зарядом;

– от количества пуль и массы каждой пули в шрапнели, а также способности пуль сохранять скорость на полете;

– от угла разлета пуль при разрыве;

– от закона распределения пуль по поражаемой площади.



Схема действия шрапнельного снаряда и разлета пуль.


При разрыве шрапнели пули приобретают добавочную скорость (приблизительно 77 м/с для 76-мм отечественной шрапнели). В результате сложения этих скоростей пули образуют конус разлета, ось которого практически совпадает с касательной к траектории в точке разрыва, а угол 2 ? , образованный вершиной этого конуса, называется утлом разлета пуль.

Площадь поражения имеет форму эллипса, и ее величина зависит от угла разлета 2 ? интервала разрыва I и угла падения? c . Выбор угла падения шрапнели зависит от положения цели и условий местности, по которой ведется стрельба. При открытых незащищенных целях выгодно уменьшать угол падения, при этом глубина поражения возрастает. Интервал разрыва и угол падения связаны с высотой разрыва шрапнели h зависимостью h=Itg ? c .

При средних дальностях и нормальной высоте разрыва 76-мм шрапнели глубина поражаемой площади составляет 150-200 м, а ширина – 20-25 м.

Поражение цели шрапнельными пулями наиболее вероятно в пределах так называемого убойного интервала, на котором 50% пуль сохраняют убойную энергию. Для отечественной 76 мм шрапнели убойный интервал колеблется от 320 м (при дальности 2000 м) до 280 м (при дальности 5000 м). С увеличением интервала разрыва число убойных пуль уменьшается.



Распределение пуль 76-мм и 120-мм шрапнелей.


В зависимости от дальности менялся и угол разлета шрапнели, поскольку он зависел от скорости снаряда и скорости его вращения. Так, при стрельбе из 76-мм пушки обр. 1902 г., например, угол 2 ? на дальности 1000 м составлял 11°, 2000 м – 13°, а 500 м – 17,5°.

Что касается конструкции шрапнели, то величина убойного интервала зависит от массы пули. В качестве основного материала, используемого для изготовления пуль, во многих странах применяли свинец с добавлением сурьмы для большей твердости. В военное время с увеличением выпуска боеприпасов и, в частности, шрапнели в качестве материала для изготовления пуль использовали сталь и чугун, что уменьшало массу пуль.

Закон распределения пуль по площади был установлен стрельбой по трем щитам (одновременно с определением угла разлета), которые устанавливались перпендикулярно к направлению стрельбы. После выстрела на втором и третьем щитах проводились окружности, захватывавшие 95% всех пуль, после чего по диаметрам этих окружностей определялись точка разрыва и угол разлета пуль.

Площадь круга на третьем щите делилась концентрическими окружностями на 10 колец равной ширины, и для каждого кольца определялось число пуль, приходящееся на единицу площади. В результате опытных стрельб было установлено, что пули шрапнелей различного калибра распределяются по-разному.

Для 76-мм шрапнели наибольшая плотность поражения приходилась на 6-е и 8-е кольца, тогда как для 120-мм шрапнели – на внутренние (центральные) кольца, убывая постепенно по мере приближения к наружному кольцу. Это явление можно объяснить различным расположением пуль в шрапнелях разного калибра.

Промышленно-развитые страны (Англия, Франция, Германия и др.) вплоть до Первой мировой войны считали пулевую шрапнель одним из основных боеприпасов, с помощью которого артиллерия способна выполнять все стоящие перед ней задачи. При изготовлении данного типа боеприпаса использовались современное оборудование и технологии.


Снаряжение шрапнельных снарядов в одной из промышленных лабораторий Великобритании.


Во время Первой мировой войны многие армии при использовании шрапнели столкнулись с проблемой неэффективности ее действия по укрытым, защищенным, бронированным и воздушным целям. Вместе с тем имеются сведения об удачных и весьма эффективных случаях применения шрапнели.

Германские солдаты, попадавшие под шрапнельный огонь русских 3-дм батарей, прозвали их «косой смерти». И было за что. Например, в ходе Гумбиннен-Голданского сражения в начале августа 1914 г. 1-й дивизион 27-й артиллерийской бригады, поддерживая пехоту, сосредоточил огонь всех батарей по двум вражеским батареям на открытых огневых позициях. В течение нескольких минут расчеты германских орудий были уничтожены, что вынудило германскую пехоту к отходу. Русская пехота контратаковала и захватила 12 орудий.

Генерал-лейтенант Я.М. Ларионов вспоминал эпизод боя его 2-й бригады 26-й пехотной дивизии у г. Дренгфурта 26 августа 1914 г.: «Немецкая пехота повела наступление из-за озера Резауера… Наступление велось густыми боевыми цепями, которые издали казались колоннами. Я приказал командиру 2-го дивизиона открыть огонь. Открыла огонь и артиллерия боевого участка 102-го Вятского полка. Немецкая пехота повернула назад, унося убитых и раненых. Отбив немецкую пехоту, командир 2-го дивизиона приказал перенести огонь на гаубичную батарею у Дренгфуртовской полуразрушенной башни. Но дистанционная трубка оказалась коротка.

Командир дивизиона приказал перейти на гранату, но и для гранаты предельный прицел оказался недостаточен». Здесь, видимо, сказалось использование в гранатах тех же 22-с трубок, что и в шрапнелях; только с 1916 г. русская полевая артиллерия стала получать 36-с трубки, позволившие увеличить дальность стрельбы гранатой, стрельба же шрапнелью велась все с той же 22-с трубкой.

С другой стороны, в журнале заседания Главного Управления Российского Красного Креста от 14 сентября 1914 г. отмечалась «необычайная сила огня, когда, например, после удачного шрапнельного залпа из 250 человек остается не получившими ранения всего 7 человек».

7 августа 1914 г. 6-я батарея 42-го французского полка под командованием капитана Ломбаля открыла огонь шрапнелью из 75-мм пушек с дальности 5000 м по германскому 21-му драгунскому полку в походной колонне, шестнадцатью выстрелами уничтожила полк, выведя из строя 700 человек. Известный французский артиллерист генерал Ф-Ж. Эрр писал о боях 1914 г. на Западном фронте: «Наша 75-мм пушка снова выявила свое превосходство и свободно развивала свое смертоносное действие по достаточно близким и открытым целям, производя подчас настоящее избиение германской пехоты».

Пока шрапнель применялась в тех условиях и против таких целей, на которые рассчитывали до войны, она давала хорошие результаты. Но тот же Эрр признает, что это происходило до вступления в действие германской тяжелой артиллерии, до перехода пехоты к разреженным строям и начала «окопной» войны. Пехотные строи разрежались, в окопах для предохранения от шрапнели устраивали блиндажи, козырьки, батареи чаще ставили на закрытых позициях. От артиллерии требовалось поддерживать пехотную атаку, но надежды на стрельбу через головы войск не оправдались – слишком частыми оказались преждевременные разрывы. Действие пушечной шрапнели в большей степени, чем действие гранаты, зависело от точности срабатывания трубки, а действие самой трубки с пороховым составом определялось атмосферным давлением, температурой воздуха и скоростью вращения снаряда) и от профиля рельефа местности.



Унитарные выстрелы к полевым пушкам со шрапнельными снарядами, применявшиеся во время Первой мировой войны.


Можно привести такие данные опроса 33265 раненых, эвакуируемых из Москвы в сентябре 1915 г.: пулевые ранения (с повреждением костей) составляли 70%, шрапнелью – 19,1%, осколками снарядов – 10,3%, холодным оружием – 0,6%. Т.е. до окончательного установления позиционных форм борьбы и широкого снабжения армии стальными касками доля ранений шрапнелью была еще достаточно велика.

Маршал A.M. Василевский вспоминал, как русские солдаты и офицеры определяли, австрийцы или германцы занимают фронт перед ними: «В начале каждой артиллерийской перестрелки мы поглядывали на цвет разрыва и, увидев знакомую розовую дымку, которую давали австрийские снаряды, облегченно вздыхали». Розоватый цвет давал разрыв австрийской шрапнели, в то время как шрапнель германских полевых пушек обозначала точку своего разрыва белым облачком (как, кстати, и русская), а тяжелая гаубичная – зеленовато-желтым.

Первая мировая война показала низкую эффективность шрапнели в поражении многих целей, особенно при позиционных методах ведения войны. В связи с этим боекомплекты полевых батарей были изменены в пользу фугасных снарядов за счет шрапнелей. Так, осенью 1915 г. в боекомплекте русской полевой артиллерии доля фугасных гранат увеличивается с 15 до 50%.

Русский артиллерист Е.К. Смысловский приводил следующий средний теоретический процент поражения целей при стрельбе 3-дм шрапнелью при условии наивыгоднейшего среднего интервала и высоты разрыва:


Не удивительно, что использование пехотой укрытий вызвало резкий рост расхода шрапнелей на поражение одного солдата.

Практически начиная с первых месяцев Первой мировой войны при переходе к хорошо развитой в инженерном отношении позиционной обороне перед артиллерией всех воюющих стран возникла проблема – как обеспечить эффективное поражение противника, находившегося в полевых фортификационных сооружениях. В связи с этим срочно требовалось решить две основные задачи: увеличить угол падения снаряда и могущество снаряда. Для решения вышеуказанных задач наиболее полно подходили артиллерийские орудия типа гаубиц, так как легкие скорострельные пушки оказалась малоэффективными против укрытых в полевых сооружениях целей (даже легкого типа) вследствие настильности своей траектории и – что более существенно – из-за малого могущества действия снаряда.

Таким образом, всем воюющим государствам пришлось достаточно интенсивно начать снабжении своей артиллерии гаубицами, и к концу войны 1914-1918 гг. процент гаубичной артиллерии поднялся до 40 и более. Что же касается состава боекомплекта гаубиц, то шрапнель там также присутствовала (имелось мнение, что гаубичная шрапнель сохраняет свою роль, поскольку может «заглянуть» в окоп). К тому же гаубичная шрапнель вмещала больше пуль большего веса, «клала» их гуще и равномернее (ближе к нормальному закону распределения) , а при стрельбе по артиллерийским позициям меньше перехватывалась орудийными щитами.


Разрывы шрапнельных снарядов над позициями. Первая мировая война.


Известный германский артиллерист Г. Брухмюллер, описывая действия германской дивизионной и корпусной артиллерии в 1916 г. на Русском фронте, упоминает использование шрапнелей 10-сми 12-см тяжелыми гаубицами групп противобатарейной борьбы. Но уже в 1917 г. для Русского и Западного фронтов он почти не обращает внимания на шрапнели, говоря об «осколочных выстрелах». Тут, правда, сыграло свою роль еще и то, что предвоенные запасы шрапнелей закончились.

Также необходимо отметить тот факт, что шрапнель и дистанционная трубка в производстве были дороже, чем осколочно-фугасная граната и контактный взрыватель, а это в условиях массового производства, особенно во время войны вело к дополнительным государственным затратам при размещении заказов на частных предприятиях и за границей. Начальник ГАУ в годы Первой мировой войны А.А. Маниковский отмечал в своем труде «Боевое снабжение русской армии в войну 1914- 1918 гг.»: «Если на казенном заводе 122-мм гаубичная шрапнель обходилась в 15 руб. за снаряд, то частный завод получал 35 руб. 76-мм соответственно 10 и 15 руб.». Стоимость 76-мм, 122-мм и 152-мм фугасной гранаты составляла на казенных предприятиях 9, 30 и 48 руб., а на частных заводах -12,3, 45,58, и 70 руб. соответственно. С учетом громадного расхода снарядов в ходе Первой мировой войны это был еще один немаловажный аргумент в пользу гранаты в дополнение к ее более эффективному действию по укрытой пехоте и артиллерии противника.

Низкая боевая эффективность шрапнельных снарядов в условиях позиционной войны, а также появление новых целей – бронеавтомобилей, аэропланов, танков способствовала разработке новых типов боеприпасов.

7 августа 1914 года шел жаркий бой: французы бились с немцами, которые только что перешли границу и вторглись во Францию. Капитан Ломбаль – командир французской 75-миллиметровой пушечной батареи – осматривал в бинокль поле боя. Вдали, километров за пять, виднелся большой лес. Оттуда появлялись колонны немецких войск, и капитан Ломбаль вел по ним огонь.
Вдруг какое-то желтое пятно, показавшееся слева от леса, привлекло внимание капитана. Пятно ширилось, словно растекалось по полю. Но за пять километров даже в бинокль не удавалось разглядеть, что это такое. Одно лишь было ясно: раньше не было этого пятна, а теперь оно появилось – и передвигается; очевидно, это – немецкие войска. И капитан Ломбаль решил на всякий случай пустить в ту сторону несколько снарядов. Быстро определил он по карте, где именно находится пятно, сделал расчеты, чтобы перенести огонь, и подал команды.
С резким свистом снаряды понеслись вдаль. Каждое из четырех орудий батареи сделало по четыре выстрела: капитан Ломбаль не хотел тратить много снарядов на эту непонятную цель. Всего лишь несколько десятков секунд продолжалась стрельба.
Пятно перестало растекаться по полю.
К вечеру бой затих. Большой лес попал в руки французов. А слева от этого леса – на большой поляне – французы нашли горы трупов: около 700 немецких кавалеристов и столько же лошадей лежали мертвые. Это был почти весь 21-й прусский драгунский полк. Он попался на глаза французскому артиллеристу в тот момент, когда перестраивался в боевой порядок, и был целиком уничтожен в несколько десятков секунд шестнадцатью снарядами капитана Ломбаля.
Снаряды, которые произвели такое опустошение в немецких рядах, носят название «шрапнель».
Как же устроен этот замечательный снаряд, и кто его придумал?
Уже давно – еще в шестнадцатом веке – задумывались артиллеристы над таким вопросом:
– Какой смысл поражать неприятельского бойца большим, тяжелым ядром, когда довольно и маленькой пули, чтоб вывести человека из строя?
И вот в тех случаях, когда нужно было не разрушать стены, а наносить поражение неприятельской пехоте, артиллеристы стали вместо ядра закладывать в ствол орудия целую кучу мелких камней.
Рис. 80. Картечь надежно защищает пушку от атакующей пехоты или конницы противника

Но заряжать орудие кучей камней неудобно: камни рассыпаются в стволе; в полете они быстро теряют скорость. Поэтому вскоре же – в начале семнадцатого века – стали заменять камни шаровыми металлическими пулями.

Рис. 81. Как была устроена и как действовала «картечная граната»

Чтобы удобнее было заряжать орудие большим количеством пуль, их заранее укладывали в круглую (цилиндрической формы) коробку.
Такой снаряд получил название «картечь». Коробка картечи разламывается в момент выстрела. Широким снопом вылетают из орудия пули. Они хорошо поражают живые цели – наступающую пехоту или конницу, буквально сметают ее с лица земли.
Картечь дожила до наших дней: она применяется при стрельбе из малокалиберных орудий, не имеющих шрапнели, для отражения атаки противника, для самообороны (рис. 80).
Но у картечи есть существенный недостаток: шаровые пули ее быстро теряют скорость, и поэтому картечь действует на дальности не больше 150-500 метров от орудия (в зависимости от калибра пуль и силы заряда).
Капитан английской артиллерии Шрапнель в 1803 году предложил наполнять пулями гранату и таким способом посылать пули дальше 500 метров. Вместе с пулями он всыпал, конечно, в свой снаряд и небольшой разрывной заряд пороха (рис. 81).
«Картечная граната» – так был назван этот снаряд, – разрывалась, как всякая граната, и осыпала неприятеля, кроме осколков, еще и пулями.
В очко этого снаряда, как и в гранату, вставляли деревянную трубку с пороховым составом.
Если при стрельбе оказывалось, что трубка горит слишком долго, для следующих выстрелов часть ее отрезали. И вскоре заметили, что лучше всего снаряд поражает, когда он разрывается еще в полете, в воздухе, и осыпает людей пулями сверху.
Но в шаровом снаряде помещалось мало пуль, всего штук 40-50. Да из них еще добрая половина пропадала зря, улетая вверх (рис. 81). Эти пули, потеряв скорость, падали затем на землю, как горох, и не причиняли противнику вреда.
«Вот если бы удалось направить все пули в цель, а не давать им разлетаться во все стороны! Да еще заставить снаряд разрываться там, где нужно, а не там, где трубке вздумается его разорвать», – мечтали артиллеристы в начале девятнадцатого века.
Но лишь в конце этого столетия удалось технике добиться выполнения и того, и другого пожеланий.
Теперешняя шрапнель – так ее назвали по имени изобретателя – послушный воле артиллериста снаряд.

Рис. 82. Современная шрапнель в полете и в момент разрыва

Она несет в себе пули до того места, где ей «приказано» разорваться (рис. 82).
Это как бы маленькое летящее орудие: оно производит выстрел тогда, когда это нужно стреляющему, и осыпает пулями цель (рис. 83 и 84).

Рис. 83. В окопе или за деревом можно укрыться от шрапнельных пуль

Рис. 84. На такой площади при удачном разрыве шрапнели ее пули наносят действительное поражение

В продолговатой шрапнели немало пуль: в 76-миллиметровой – около 260; в 107-миллиметровой – около 600 шаровых пуль из сплава свинца и сурьмы.

Рис. 85. При низком разрыве шрапнели разлет пуль меньше, а падают они гуще

Густой сноп этих пуль при удачном разрыве осыпает площадь около 150-200 метров в глубину и 20-30 метров в ширину – почти треть гектара.
Это значит, что пули одной удачно разорвавшейся шрапнели покроют в глубину участок большой дороги, по которому идет в колонне целая рота – 150-200 человек с пулеметными двуколками. В ширину же пули покроют всю дорогу с ее обочинами.
У шрапнели есть еще одно замечательное свойство: если стреляющему командиру надо, чтобы разрывы получились пониже, а пули падали погуще, достаточно подать соответствующую команду, и шрапнель разорвется ниже. Сноп пуль будет короче и уже, но зато пули лягут гуще (рис. 85).
Механизм, который позволяет управлять шрапнелью, – это ее «дистанционная трубка» (рис. 86).

Рис. 86. «Дистанционная трубка»

В дистанционной трубке есть приспособление, похожее на то, которое вы видели уже во взрывателе. Как и там, здесь тоже есть ударник с капсюлем и жало. Но тут они как бы поменялись местами: ударник находится не позади, а впереди жала; чтобы наткнуться на жало, капсюлю надо двинуться вместе с ударником уже не вперед, а назад. Такое движение ударника назад и происходит непременно в момент выстрела. Ударник – тяжелый металлический стаканчик; при выстреле, когда снаряд резко двинулся вперед, ударник по инерции стремится остаться на месте, оседает, а из-за этого капсюль, прикрепленный ко дну ударника, накалывается на жало.
Взрыв капсюля в дистанционной трубке происходит, следовательно, очень рано – еще до вылета снаряда из орудия.
Но взрыв этот не сразу передается вышибному заряду, он только зажигает порох в «передаточном канале» (рис. 86), а вслед за тем начинает медленно гореть специальный пороховой состав, запрессованный в кольцевом желобке «верхней дистанционной части» трубки (то-есть в ее верхнем кольце).
Пробежав по этому желобку, пламя добирается до пороха в таком же желобке «нижней дистанционной части». Оттуда-через «запальное отверстие» и передаточный канал – пламя попадает в «петарду» (или пороховую камору). Взрыв в петарде вышибает латунный кружок, которым закрыто дно трубки, и огонь передается дальше, в «центральную трубку» снаряда, наполненную пороховыми цилиндриками (рис. 82).
Быстро пробежав по ней, огонь взрывает «вышибной заряд» шрапнели.
Головка снаряда отрывается, и пули вылетают из шрапнели. Как видите, пламени приходится проделать достаточно длинный путь, прежде чем оно вызовет, наконец, разрыв шрапнели.

Рис. 87. Так «устанавливают» дистанционную трубку с помощью ключа

Но это сделано нарочно: пока пламя передвигается по каналам и желобкам колец, шрапнель достигает намеченного заранее места.
Стоит нам только чуть удлинить путь пламени – и шрапнель разорвется позже. Наоборот, если мы сократим пламени его путь, сократим время горения, шрапнель разорвется раньше.
Все это достигается соответствующим устройством дистанционной трубки.
Нижнее дистанционное кольцо трубки поворачивается с помощью особого ключа, а иногда и просто рукой, и устанавливается на любое деление (рис. 87).
В некоторых трубках эти деления наносят так, чтобы каждое из них соответствовало дальности полета снаряда на 50 метров. Поставив кольцо делением «100» против риски (черточки) на «тарели», получим разрыв снаряда на удалении 50x100 = 5000 метров от орудия. А если прибавим еще одно деление, то шрапнель разорвется в 5 050 метрах от орудия. Это удобно потому, что деления прицела орудия имеют такую же нарезку: если прибавим одно деление прицела, снаряд полетит дальше на 50 метров. Незачем долго считать: достаточно скомандовать одинаковую установку прицела и трубки, например: «Прицел 100, трубка 100».
Некоторые трубки имеют нарезку в секундах: если, например, поставить кольцо такой трубки на деление «20», то снаряд разорвется через 20 секунд. Каждое такое деление трубки разделено еще на пять маленьких делений. Так что, если установку в 20 секунд увеличим на одно маленькое деление, то снаряд разорвется через 20,2 секунды. Нужную установку такой трубки определяют по специальным таблицам стрельбы.
В любой трубке весь секрет заключается в том, что когда мы поворачиваем нижнее кольцо, устанавливая его на то или другое деление, то этим самым мы передвигаем и сквозной канал нижнего кольца.

Рис. 88. Путь пламени в дистанционной трубке и действие ее, при установки на разрыв в воздухе

Для того чтобы понять, какое это имеет значение, нужно совершенно ясно представить себе путь пламени в дистанционной трубке (рис. 88).
Путь этот слагается из четырех частей. Первая часть – пламя бежит по желобку верхнего кольца трубки. Вторая часть – пламя пробегает по короткому сквозному каналу из верхнего кольца в нижнее. Третья часть – желобок нижнего кольца. Четвертая часть – весь оставшийся путь до «вышибного заряда».
Из всех этих отрезков пути самые длинные по времени – верхний и нижний желобки. При установке на полное время горения трубки пламени нужно пробежать верхний желобок до самого конца, только тогда оно может спуститься через кагал в нижний желобок. И снова – нужно пробежать весь нижний желобок от начала до конца, чтобы потом пуститься в дальнейший путь.
Но вот мы поворачиваем нижнее кольцо так, что сквозной канал соединяет теперь не конец верхнего желобка с началом нижнего, а середины обоих желобков. Это сразу сильно сократит путь пламени: теперь ему не нужно уже пробегать по обоим желобкам с начала до конца каждого: достаточно пробежать половину верхнего и затем половину нижнего. Путь пламени по времени сократится вдвое.

Рис. 89. Путь пламени в дистанционной трубке и действие ее при установке «на картечь»


Рис. 90. Путь пламени в дистанционной трубке и действие ее при установке «на удар»

Передвигая нижнее кольцо, можно, следовательно, изменять и время горения трубки.
Можно не только установить трубку на то или иное время горения, но и получить, при желании, почти мгновенный разрыв снаряда.

Рис. 91. В момент встречи с преградой ударник продвинулся вперед и капсюль накололся на жало; так действует ударный механизм дистанционной трубки

Если установить нижнее кольцо буквой «К» против риски на тарели, то сквозной канал соединит самое начало верхнего желобка с самым концом нижнего желобка, огонь быстро передастся из головки трубки, от капсюля, внутрь снаряда (рис. 89). Шрапнель разорвется в 10-20 метрах от орудия и осыплет пулями площадь до 500 метров перед орудием.
Это так называемая установка «на картечь». Так устанавливают шрапнель, когда надо отразить атаку пехоты или конницы на орудия. Шрапнель действует при этом наподобие картечи. Некоторые дистанционные трубки прямо на заводе устанавливаются «на картечь».
Если же поставить против риски буквы «УД» на нижнем кольце, огонь из верхнего кольца не передастся вовсе в нижнее: ему помешает перемычка, против которой придется сквозной канал нижнего кольца (рис. 90).
Дистанционная часть трубки в этом случае не может вызвать разрыв снаряда.
Но у трубки есть еще и ударный механизм, подобный механизму взрывателя УГТ (рис. 91).
Когда разрыв снаряда не будет вызван дистанционным приспособлением, его вызовет другое приспособление – ударное; шрапнель разорвется, подобно гранате, от удара о землю.
Поэтому-то дистанционная трубка шрапнели и называется трубкой «двойного действия».

Рис. 92. Действие дистанционной гранаты; точками показано, на какой площади соколки ее наносят действительное поражение

Не одну только шрапнель снабжают дистанционной трубкой. Иногда ввертывают дистанционную трубку и в гранату. Тогда можно вызвать разрыв гранаты в воздухе (рис. 92), поразить воздушную цель (самолет) или же осколками достать бойцов, укрывшихся в окопах и ямах. Такую гранату обычно называют «бризантной» или «дистанционной» гранатой. Чаще всего применяют ее для стрельбы по самолетам.
Таким образом, дистанционная трубка находит теперь очень широкое применение, – не только в шрапнели, но и в гранатах, не только при стрельбе по наземным целям, но и при стрельбе по воздушным целям.
Однако у послушной, вообще говоря, дистанционной трубки бывают все же свои капризы: пороховой состав по-разному горит при разном атмосферном давлении, а на большой высоте, где давление совсем небольшое, трубка и вовсе тухнет; кроме того, трубка очень чувствительна к сырости.
Для предохранения от сырости трубку покрывают колпаком, который снимают только перед самой стрельбой.
Но не всегда это помогает: иной раз дистанционная трубка все же подводит.
Вот почему сейчас появились образцы более точной трубки, в которую для отсчета времени вставлен как бы часовой механизм, работающий с точностью до десятой доли секунды.
Стрельба снарядами с такими «секундомерами» выгодна тем, что часовой механизм действует очень точно и работа его почти не зависит от атмосферных условий.
Но зато такие трубки-секундомеры очень дороги и трудны в изготовлении. Их применяют главным образом там, где нужна особенно большая точность, – в зенитной артиллерии.


Шрапнель - вид взрывчатого артиллерийского снаряда, предназначенный для поражения живой силы противника. Назван в честь Генри Шрэпнела (англ. Henry Shrapnel) (1761-1842) - офицера Британской армии, который создал первый снаряд такого вида.
Отличительной особенностью шрапнельного снаряда являются 2 конструктивных решения:

Наличие в снаряде готовых поражающих элементов и заряда взрывчатого вещества для подрыва снаряда.

Наличие в снаряде технических приспособлений, обеспечивающих подрыв снаряда только после того, как он пролетит некоторое расстояние.

Предыстория снаряда

Ещё в XVI веке при применении артиллерии возникал вопрос об эффективности действий артиллерии против пехоты и кавалерии противника. Применение против живой силы ядер было низкоэффективным, потому что ядро может поразить только одного человека, а убойная сила ядра является явно избыточной для выведения его из строя. На самом деле пехота, вооруженная пиками, воевала в плотных строях, наиболее эффективных для рукопашного боя. Мушкетёры также строились в несколько рядов для применения приёма «караколь». При попадании в такой строй пушечное ядро поражало обычно нескольких человек, стоявших друг за другом. Однако развитие ручного огнестрельного оружия, увеличение его скорострельности, меткости и дальности стрельбы позволило отказаться от пик, вооружить всю пехоту ружьями со штыками и ввести линейные построения. Пехота, построенная не в колонну, а в линию, несла существенно меньшие потери от пушечных ядер.
Для поражения живой силы с помощью артиллерии стали применять картечь - металлические шарообразные пули, насыпанные в ствол орудия вместе с пороховым зарядом. Однако применение картечи было неудобным из-за способа заряжания.
Несколько улучшило ситуацию внедрение картечного снаряда. Такой снаряд представлял собой цилиндрическую коробку из картона или тонкого металла, в которую были сложены пули в нужном количестве. Перед выстрелом такой снаряд загружался в ствол орудия. В момент выстрела происходило разрушение корпуса снаряда, после чего пули вылетали из ствола и поражали противника. Такой снаряд был более удобен в применении, но картечь всё равно оставалась низкоэффективной. Выпущенные таким образом пули быстро теряли убойную силу и уже на расстояниях порядка 400-500 метров не способны были поразить противника.

Картечная граната Генри Шрэпнела

Новый вид снаряда для поражения живой силы изобрел Генри Шрэпнел. Картечная граната конструкции Генри Шрэпнела представляла собой прочную полую сферу, внутри которой находились пули и заряд пороха. Отличительной особенностью гранаты являлось наличие в корпусе отверстия, в которое вставлялась запальная трубка, изготовленная из дерева и содержащая некоторое количество пороха. Эта трубка служила одновременно запалом и замедлителем. При выстреле ещё при нахождении снаряда в канале ствола воспламенялся порох в запальной трубке. При полете снаряда происходило постепенное сгорание пороха в запальной трубке. Когда этот порох выгорал полностью, огонь переходил на пороховой заряд, находящийся в самой гранате, что приводило к взрыву снаряда. В результате взрыва корпус гранаты разрушался на осколки, которые вместе с пулями разлетались в стороны и поражали противника.

Важной особенностью конструкции было то, что длину запальной трубки можно было изменять непосредственно перед выстрелом. Таким образом можно было с определённой точностью добиться подрыва снаряда в желаемом месте.


К моменту изобретения своей гранаты Генри Шрэпнел состоял на военной службе в звании капитана (из-за чего в источниках он часто упоминается как «капитан Шрэпнел») в течение 8 лет. В 1803 году гранаты конструкции Шрэпнела были приняты на вооружение британской армии. Они довольно быстро продемонстрировали свою эффективность против пехоты и кавалерии. За свое изобретение Генри Шрэпнел был достойно вознагражден: уже 1 ноября 1803 года он получил звание майора, затем 20 июля 1804 года он был произведен в звание подполковника, в 1814 году ему было назначено денежное содержание от британского правительства в размере 1200 фунтов в год, впоследствии он был произведен в генералы.

Диафрагменная шрапнель

В 1871 году русский артиллерист В. Н. Шкларевич разработал для только что появившихся нарезных орудий диафрагменную шрапнель с донной камерой и центральной трубкой. Снаряд Шкларевича представлял собой цилиндрический корпус, разделенный картонной перегородкой (диафрагмой) на 2 отсека. В донном отсеке находился заряд взрывчатого вещества. В другом отсеке находились шарообразные пули. По оси снаряда проходила трубка, заполненная медленно горящим пиротехническим составом. На передний конец ствола надевалась головка с капсюлем. В момент выстрела происходит взрыв капсюля и воспламенение состава в продольной трубке. Во время полета снаряда огонь по центральной трубке постепенно передается к донному пороховому заряду. Воспламенение этого заряда приводит к его взрыву. Этот взрыв толкает вперед по ходу снаряда диафрагму и находящиеся за ней пули, что приводит к отрыву головки и вылету пуль из снаряда.
Такое устройство снаряда позволило применять его в нарезной артиллерии конца XIX века. Кроме того, у него было важное достоинство: при подрыве снаряда пули разлетались не равномерно во все стороны (как у сферической гранаты Шрэпнела), а направленно вдоль оси полета снаряда с отклонением от неё в сторону. Это повысило боевую эффективность снаряда.
Вместе с тем, такая конструкция содержала в себе существенный недостаток: время горения заряда замедлителя было постоянным. То есть снаряд был рассчитан на стрельбу на заранее определённую дистанцию и был мало эффективен при стрельбе на другие дистанции. Этот недостаток был устранен в 1873 году, когда была разработана трубка дистанционного подрыва снаряда с поворотным кольцом. Отличие конструкции состояло в том, что путь огня от капсюля до взрывного заряда состоял из 3 частей, одним из которых была (как и в старой конструкции) центральная трубка, а два других представляли собой каналы с аналогичным пиротехническим составом, находящиеся в поворотных кольцах. За счёт поворота этих колец можно было отрегулировать общее количество пиротехнического состава, которое сгорит во время полета снаряда, и таким образом обеспечить подрыв снаряда на заданной дистанции стрельбы. В разговорной речи артиллеристов использовались термины: снаряд установлен (поставлен) «на картечь», если дистанционная трубка установлена на минимальное время горения, и «на шрапнель» если подрыв снаряда должен произойти на значительном удалении от орудия. Как правило, деления на кольцах дистанционной трубки совпадали с делениями на прицеле орудия. Поэтому командиру орудийного расчета, для того, чтобы заставить снаряд разорваться в нужном месте, достаточно было скомандовать одинаковую установку трубки и прицела. Например: прицел 100; трубка 100. Помимо упомянутых положений дистанционной трубки существовало еще положение поворотных колец «на удар». В этом положении путь огня от капсюля до взрывного заряда прерывался вовсе. Подрыв основного взрывного заряда снаряда происходил в момент попадания снаряда в препятствие.

История боевого применения шрапнельных снарядов


Русский 48-линейный (122-мм) шрапнельный снаряд

Шрапнельные артиллерийские снаряды активно использовались с момента изобретения и до Первой мировой войны. Причем для полевой и горной артиллерии калибра 76 мм они составляли подавляющее большинство снарядов. Также шрапнельные снаряды использовались и в артиллерии более крупного калибра. К 1914 году были выявлены существенные недостатки шрапнельных снарядов, но снаряды продолжали использоваться.

Наиболее значительным по эффективности случаем применения шрапнельных снарядов считается бой, который произошёл 7 августа 1914 года между армиями Франции и Германии. Командир 6-й батареи 42 полка французской армии капитан Ломбаль во время боя обнаружил на удалении 5000 метров от своих позиций немецкие войска, выходящие из леса. Капитан приказал открыть огонь из 75-мм орудий шрапнельными снарядами по этому скоплению войск. 4 орудия сделали по 4 выстрела каждое. В результате этого обстрела 21-й прусский драгунский полк, который перестраивался в этот момент из походной колонны в боевой порядок, потерял убитыми около 700 человек и примерно столько же лошадей и перестал существовать как боевая единица.

Однако уже в среднем периоде войны, характеризуемом переходом к массовому применению артиллерии и позиционным боевым действиям и ухудшением квалификации офицерского артиллерийского состава стали выявляться крупные недостатки шрапнели:
малое убойное действие низкоскоростных сферических пуль шрапнели;
полное бессилие шрапнели при настильных траекториях против живой силы, находящейся в окопах и ходах сообщения, и при любых траекториях - против живой силы в блиндажах и капонирах;
малая эффективность стрельбы шрапнелью (большое количество высотных разрывов и так называемых «клевков») слабообученным офицерским персоналом, в большом количестве пришедшим из резерва;
дороговизна и сложность шрапнели в массовом производстве.

Поэтому в ходе Первой мировой войны шрапнель стала быстро вытесняться гранатой с взрывателем мгновенного (осколочного) действия, не имеющей этих недостатков и обладающей к тому же сильным психологическим воздействием.
Несмотря на всё, снаряды данного типа продолжали производить и использовать даже не по прямому назначению. Например из-за того, что кумулятивные снаряды (имевшие большую бронепробиваемость, чем у бронебойных) появились в боекомплекте полковых орудий Красной армии только с 1943 года, до этого времени при борьбе с танками Вермахта использовалась чаще всего шрапнель, поставленная «на удар».

Шрапнельные противопехотные мины

Противопехотные мины, внутреннее устройство которых сходно со шрапнельным снарядом, разрабатывались в Германии. Во времена первой мировой войны была разработана Schrapnell-Mine, управляемая по электрическому проводу. Позднее на ее основе была разработана и в 1936 году принята на вооружение мина Sprengmine 35. Мина могла применяться со взрывателями нажимного или натяжного действия, а также с электродетонаторами. При срабатывании взрывателя сначала воспламенялся пороховой замедлитель, который выгорал примерно за 4–4,5 секунды. После этого огонь переходил на вышибной заряд, взрыв которого подбрасывал боевой блок мины на высоту порядка 1 метра. Внутри боевого блока также были трубки-замедлители с порохом, по которым огонь передавался на основной заряд. После выгорания пороха в замедлителях (хотя бы в 1 трубке) происходил взрыв основного заряда. Этот взрыв приводил к разрушению корпуса боевого блока и разбросу осколков корпуса и находившихся внутри блока стальных шариков (365 штук). Разлетающиеся осколки и шарики были способны поразить живую силу на расстоянии до 15–20 метров от места установки мины. Из-за особенности применения эта мина получила в Советской армии прозвище «мина-лягушка», а в армиях Великобритании и США - «прыгающая Бетти». Впоследствии мины такого типа были разработаны и приняты на вооружение и в других странах (советские ОЗМ-3, ОЗМ-4, ОЗМ-72, американская M16 APM, итальянская «Valmara 69» и т.п.

Развитие идеи

Хотя шрапнельные снаряды как противопехотное оружие уже практически не применяются, идеи, на которых основывалась конструкция снаряда, продолжают использоваться:
Используются боеприпасы со сходным принципом устройства, в которых вместо шарообразных пуль применяются стержневые, стреловидные или пулевидные поражающие элементы. В частности, США во время войны во Вьетнаме использовали гаубичные снаряды с поражающими элементами в виде небольших стальных оперенных стрел. Эти снаряды показали свою высокую эффективность при обороне орудийных позиций.
На принципах шрапнельного снаряда построены боевые части некоторых зенитных ракет. Например, боевая часть ракет ЗРК С-75 снаряжена готовыми поражающими элементами в виде стальных шариков или в некоторых модификациях пирамидок. Вес одного такого элемента менее 4 г, общее число в БЧ - около 29 тыс.


Генри Шрапнель родился в Англии в городе Брэдфорде 3 июня 1761 года. В 1784 году, находясь на службе в Королевской артиллерии в чине капитана, он додумался для поражения живой силы использовать полую сферу, наполненную пулями, которая разрывалась в воздухе. После того как новый снаряд показал себя в деле, военная карьера его изобретателя стала стремительно расти.
До этого момента в кавалерию и пехоту стреляли в основном картечью. Это были металлические шарообразные пули, насыпанные в ствол орудия вместе с пороховым зарядом. Но картечь было неудобно заряжать, и потому в регулярных боевых войсках быстро оценили новаторство, предложенное капитаном Шрапнелем. Да и сам капитан смог проверить эффективность своего изобретения на собственной шкуре в буквальном смысле: в 1793 году он был ранен шрапнелью во время боя во Фландрии. Тогда этот снаряд еще не получил его имени. Шрапнельным его стали называть только в 1803 году. Тогда же Шрапнеля произвели в майоры. Это было вскоре после того, как новый снаряд показал свою мощь во время взятия Суринама. Уже 30 апреля 1804 года Шрапнель получил чин подполковника.
Действие шрапнели в бою было столь впечатляющим, что наблюдавший за бомбардировками англичан Балтимора в 1814 году американский писатель Френсис Скотт Кей посвятил шрапнели несколько строк в своей поэме, позже ставшей государственным гимном США.
После сражение при Вимейро в 1808 году Наполеон издал приказ - собрать неразорвавшиеся снаряды, демонтировать, изучить и наладить производство подобного. Однако Наполеону не удалось открыть секрет английского капитана. Что видимо во много решило исход битвы при Ватерлоо, где шрапнель помогла Веллингтону продержиться до похода прусского корпуса. Как считал артиллерийский полковник Роб, «нет более смертоносного огня, чем действие шрапнели». А генерал Джордж Вуд, командовавший артиллерией у Веллингтона был еще более категоричен: «Без шрапнели нам не удалось бы вернуть Ла Э-Сент главную позицию нашей обороны. Это обстоятельство способствовало коренному повороту в ходе сражения».
Британское правительство назначило Шрапнелю ежегодную пенсию в 1200 фунтов и поручило командовать батальоном. 6 марта 1827 года Шрапнель получил чин старшего полковника Королевской артиллерии, а через десять лет 10 января 1837 года производят в генерал-лейтенанты. Умер Генри Шрапнель 13 марта 1842 года в Петри-Хауз в Саутгемптоне.

Шрапнель - артиллерийский снаряд основного назначения с готовыми поражающими элементами для выведения из строя открыто стоящих живой силы и военной техники противника. Своё название шрапнель получила от фамилии английского артиллериста Генри Шрэпнела (англ. Henry Shrapnel ), который разработал боеприпас подобного устройства, принятый в 1803 году на вооружение армии Великобритании. Однако ещё до этого момента такого рода идея была реализована в артиллерии Российской Империи и Пруссии, но не получила широкого распространения в силу ряда причин. Шрапнель представляет собой тонкостенный стакан с вышибным зарядом из дымного чёрного пороха, заполненный металлическими шариками (шрапнельными пулями) или пирамидками. Подрыв вышибного заряда производится посредством так называемой дистанционной трубки - взрывателя с возможностью установки его срабатывания после истечения заданного времени, при ударе о препятствие или после вылета из ствола орудия. Стрельба шрапнелью ведётся таким образом, чтобы при её разрыве на нисходящей ветви траектории полёта выброшенные пули накрыли желаемую область земной поверхности. При этом их поражающее действие обеспечивается кинетической энергией всего боеприпаса до разрыва, а не действием вышибного заряда. Последний предназначен для обеспечения формирования конуса рассеяния готовых поражающих элементов и не способен самостоятельно обеспечить им достаточную кинетическую энергию. Образующееся при разрыве облако дыма облегчает корректировку огня.

В артиллерийскую практику XVIII века прочно вошла картечь - боеприпас для поражения живой силы противника, который по сути превращал пушку в очень большой дробовик: вместо ядра в пушечный ствол заряжались несколько сотен металлических шариков-пуль, уложенных в легкосгораемую оболочку. Выстрел такой «дробью» был способен нанести огромный урон вражеской пехоте или кавалерии на близком расстоянии, но на дистанции свыше 400-600 метров эффективность картечи резко падала - из-за низкой вероятности попадания в цель вследствие рассеяния пуль, а также снижения их убойного действия из-за неоптимальной аэродинамической формы и сопротивления воздуха. Артиллеристы разных стран стали искать способы распространить эффективное действие картечи на бо́льшие дальности. Как следствие, они пришли к «витавшей в воздухе» идее доставки пуль в окрестность цели внутри специального выстреливаемого из пушки снаряда с полостью, из которого они выбрасываются в нужный момент посредством вышибного заряда. Генри Шрэпнел первым решил возникающие при этом технические, производственные и организационные проблемы, что позволило армии Великобритании приступить к широкому введению нового боеприпаса.

Шрапнель быстро вошла в обиход всех армий мира, хотя требовала для своего успешного применения высокой выучки артиллеристов, в ряде случаев граничащей с искусством, когда дело доходило до стрельбы с закрытых позиций . Развитие артиллерийского дела, появление таблиц стрельбы позволило к началу Первой мировой войны поставить применение шрапнели на научную основу. В результате в начальной манёвренной фазе боевых действий шрапнель продемонстрировала высокую эффективность - широко известен факт поражения более 700 человек и приблизительно такого же количества лошадей 21-го прусского драгунского полка всего лишь 16 шрапнельными выстрелами калибра 75 мм 6-й батареи 42-го полка французской армии. Однако с переходом к позиционной войне и после введения защитных шлемов (касок) шрапнель потеряла свою результативность и была в известной мере вытеснена, хотя и не полностью, осколочными и фугасными гранатами .

Тем не менее, в межвоенное время в СССР шрапнель продолжала не только стоять на вооружении, но и производиться далее, хотя уже в существенно меньших масштабах. При установке трубки «на картечь» - срабатывание вышибного заряда по вылете из ствола - шрапнель с успехом использовалась для самообороны орудий от пехоты и кавалерии противника. Особенно важным это было для новых артиллерийских систем с дульным тормозом , для которых было запрещено использование картечи. В годы Великой Отечественной войны шрапнель, поставленная «на удар», использовалась в качестве эрзац-бронебойных снарядов при нехватке последних. На дистанциях ближе 500 метров механический удар и дробящее действие боеприпаса после срабатывания вышибного заряда позволяли пробить или проломить броневую плиту толщиной до 30 мм.

Шрапнель получила свое название в честь ее изобретателя английского офицера Генри Шрапнеля, разработавшего этот снаряд в 1803 году. В первоначальном виде шрапнель представляла разрывную сферическую гранату для гладкоствольных пушек, во внутреннюю полость которой вместе с дымным порохом засыпались свинцовые пули.

В 1871 году русский артиллерист В.Н.Шкларевич разработал для только что появившихся нарезных орудий диафрагменную шрапнель с донной камерой и центральной трубкой (см. рис.1 ). Она еще не отвечала современному понятию шрапнели, так как имела фиксированное время горения трубки. Только через два года после принятия на вооружение первой русской дистанционной трубки образца 1873 года шрапнель обрела свой законченный классический облик. Этот год может считаться годом рождения русской шрапнели.

Дистанционная трубка 1873 года имела одно поворотное дистанционное кольцо с медленно горящим пиротехническим составом (см. рис.2 ). Максимальное время горения состава составляло 7,5 с, что позволяло вести огонь на дальность до 1100 м.

Инерционный механизм воспламенения трубки при выстреле (боевой винт) хранился отдельно и вставлялся в трубку непосредственно перед выстрелом. Пули отливались из сплава свинца с сурьмой. Пространство между пулями заливалось серой. Характеристики русских шрапнельных снарядов к нарезным орудиям обр. 1877 г. калибра 87 и 107 мм представлены в таблице 1 .

таблица 1

Калибр, мм 87 107
Масса снаряда, кг 6,85 12,5
Начальная скорость, м/с 442 374
Число пуль 167 345
Масса одной пули, г 11 11
Суммарная масса пуль, кг 1,83 3,76
Относительная масса пуль 0,27 0,30
Масса порохового
вышибного заряда, г
68 110

Пулевая шрапнель вплоть до первой мировой войны составляла основную часть боекомплектов орудий полевой конной артиллерии, вооруженной 76-мм пушками, и значительную часть боекомплектов орудий более крупных калибров (см. рис.3 ). Русско-японская война 1904–1905 гг., в которой японцами впервые в массовых масштабах были применены ударные осколочные гранаты, снаряженные мелинитом, поколебала позиции шрапнели, однако в первом периоде Мировой войны она еще оставалась наиболее массовым снарядом. Высокая эффективность ее действия по открыто расположенным скоплениям живой силы подтверждалась многочисленными примерами. Так, 7 августа 1914 г. 6-я батарея 42-го французского полка, открыв огонь шрапнелью калибра 75 мм на дальности 5000 м по походной колонне 21-го драгунского германского полка, шестнадцатью выстрелами уничтожила полк, выведя из строя 700 человек.

Однако уже в среднем периоде войны, характеризуемом переходом к массовому применению артиллерии и позиционным боевым действиям и ухудшением квалификации офицерского артиллерийского состава стали выявляться крупные недостатки шрапнели:

Малое убойное действие низкоскоростных сферических пуль шрапнели;

Полное бессилие шрапнели при настильных траекториях против живой силы, находящейся в окопах и ходах сообщениях, и при любых траекториях – против живой силы в блиндажах и капонирах;

Малая эффективность стрельбы шрапнелью (большое количество высотных разрывов и так называемых «клевков») слабообученным офицерским персоналом, в большом количестве пришедшим из резерва;

Дороговизна и сложность шрапнели в массовом производстве.

Поэтому в ходе войны шрапнель стала быстро вытесняться осколочной гранатой с взрывателем ударного действия, не имеющей этих недостатков и обладающей к тому же сильным психологическим воздействием. На заключительном этапе войны и в послевоенный период в связи с быстрым развитием военной авиации шрапнель стала использоваться для борьбы с самолетами. Для этой цели были разработаны стержневые шрапнели и шрапнели с накидками (в России – 76-мм стержневая шрапнель Розенберга, содержащая 48 призматических стержней массой 45–55 г, уложенных в два яруса, и 76-мм шрапнель Гартца, содержащая 28 накидок массой по 85 г каждая). Накидки представляли собой попарно связанные короткими тросами стальные трубки, залитые свинцом, предназначенные для перебивания стоек и растяжек аэропланов. Шрапнели с накидками использовались также для разрушения проволочных заграждений. В каком-то смысле шрапнели с накидками можно рассматривать как прототип современных стержневых боевых частей (см. рис. 4 и 5 ).

К началу второй мировой войны шрапнель почти полностью утратила свое значение. Казалось, время шрапнели ушло навсегда. Однако, как это часто бывает в технике, в 60-х годах неожиданно началось возвращение к старым шрапнельным конструкциям.

Основной причиной было повсеместное недовольство военных низкой эффективностью осколочных гранат с ударным взрывателем. Эта низкая эффективность имела следующие причины:

Низкую плотность осколков, присущую круговым полям;

Неблагоприятную ориентацию осколочного поля относительно поверхности земли, при которой основная масса осколков уходит в воздух и грунт. Использование дорогостоящих неконтактных взрывателей, обеспечивающих воздушный разрыв снаряда над целью, повышает эффективность действия осколков в нижней полусфере разлета, но принципиально не изменяет общего низкого уровня действия;

Малую глубину поражения при настильной стрельбе;

Случайный характер дробления снарядных корпусов, приводящий с одной стороны к неоптимальному распределению осколков по массе, с другой – к неудовлетворительной форме осколков.

При этом наиболее негативную роль играет процесс разрушения оболочки продольными трещинами, движущимися по образующим корпуса, приводящий к формированию тяжелых длинных осколков (так называемых «сабель»). Эти осколки забирают до 80% массы корпуса, увеличивая эффективность менее чем на 10%. Многолетние исследования по изысканию сталей, дающих высококачественные осколочные спектры, проводившиеся во многих странах, не привели к кардинальным сдвигам в этой области. Оказались безуспешными и попытки использования различных способов заданного дробления из-за резкого удорожания производства и снижения прочности корпуса.

К этому добавлялось неудовлетворительное (не мгновенное) действие ударных взрывателей, особенно ярко проявившееся в специфических условиях послевоенных региональных войн (залитые водой рисовые поля Вьетнама, песчаные ближневосточные пустыни, болотистые почвы нижнего Двуречья).

С другой стороны, возрождению шрапнели способствовали такие объективные факторы, как изменение характера боевых действий и появление новых целей и видов оружия, в том числе общая тенденция перехода от стрельбы по площадным целям к стрельбе по конкретным одиночным целям, насыщение поля боя противотанковыми средствами, возросшая роль малокалиберных автоматических систем, оснащение пехоты средствами индивидуальной бронезащиты, резко обострившаяся проблема борьбы с малоразмерными воздушными целями, в том числе с противокорабельными крылатыми ракетами. Важную роль сыграло также появление тяжелых сплавов на основе вольфрама и урана, резко повысивших пробивное действие готовых поражающих элементов.

В 1960-х годах в период вьетнамской кампании армия США впервые применила шрапнели со стреловидными поражающими элементами (СПЭ). Масса стальных СПЭ составляла 0,7–1,5 г, число в снаряде 6000–10000 шт. Моноблок СПЭ представлял набор стреловидных элементов, уложенных параллельно оси снаряда заостренной частью вперед. Для более плотной укладки может применяться также попеременная укладка заостренной частью вперед-назад. СПЭ в блоке залиты связующим веществом с пониженной адгезионной способностью, например, воском. Скорость выброса блока пороховым вышибным зарядом составляет 150–200 м/с. Отмечалось, что увеличение скорости выброса выше этих пределов за счет увеличения массы вышибного заряда и повышения энергетических характеристик пороха приводит к увеличению вероятности разрушения стакана и к резкому увеличению деформирования СПЭ вследствие потери их продольной устойчивости, особенно в нижней части моноблока, где наседающая нагрузка при выстреле достигает максимума. С целью предохранения СПЭ от деформации при выстреле в некоторых шрапнельных снарядах США применяется многоярусная укладка СПЭ, при которой нагрузка от каждого яруса воспринимается диафрагмой, в свою очередь, опирающейся на уступы центральной трубки.

В 1970-х годах появились первые боевые части со стреловидными ПЭ для неуправляемых авиационных ракет (НАР). Американская НАР калибра 70 мм с боевой частью М235 (1200 стреловидных ПЭ массой по 0,4 г с суммарной начальной скоростью 1000 м/с) при подрыве на дистанции 150 м от цели обеспечивает зону поражения с фронтальной площадью 1000 кв.м. Скорость элементов при встрече с целью составляет 500–700 м/с. НАР со стреловидными ПЭ французской фирмы «Томсон-Брандт» выпускается в вариантах, предназначенных для поражения легкобронированных целей (масса одного СПЭ 190 г, диаметр 13 мм, бронепробиваемость 8 мм при скорости 400 м/с). В калибре НАР 68 мм число СПЭ составляет соответственно 8 и 36, в калибре 100 мм – 36 и 192. Разлет СПЭ происходит при скорости снаряда 700 м/с в угле 2,5°.

Фирма «BEI Defence Systems» (США) проводит разработку высокоскоростных ракет HVR, снаряженных стреловидными ПЭ из вольфрамового сплава и предназначенных для поражения воздушных и наземных целей. При этом используется опыт, накопленный в процессе работ по программе создания отделяемого проникающего элемента кинетической энергии SPIKE (Separating Penetrator Kinetic Energy). Демонстрировалась высокоскоростная ракета «Persuader» («Шпоры») имеющая в зависимости от массы БЧ скорость 1250–1500 м/с и позволяющая поражать цели на дальности до 6000 м. БЧ исполняется в различных вариантах: 900 стреловидных ПЭ массой 3,9 г каждый, 216 стреловидных ПЭ по 17,5 г или 20 ПЭ по 200 г. Рассеивание ракеты не превышает 5 мрад, стоимость не более 2500 долларов.
Следует отметить, что противопехотные шрапнели со стреловидными ПЭ хотя и не входят в перечень официально запрещенного международными конвенциями оружия, но, тем не менее, негативно оцениваются мировым общественным мнением как негуманный вид оружия массового поражения. Об этом косвенно свидетельствуют такие факты, как отсутствие данных об этих снарядах в каталогах и справочниках, исчезновение их рекламы в военно-технической периодике и т. п.

Шрапнели малых калибров интенсивно развивались в последние десятилетия в связи с возрастанием роли малокалиберных автоматических пушек во всех видах вооруженных сил. Наименьший известный калибр шрапнельного снаряда составляет 20 мм (снаряд DM111 германской фирмы «Diehl» к автоматическим пушкам Rh200, Rh202) (см. рис.6 ). Последняя пушка состоит на вооружении БМП «Мардер» . Снаряд имеет массу 118 г, начальную скорость 1055 м/с и содержит 120 шариков, пробивающих на расстоянии 70 м от точки подрыва дюралевый лист толщиной 2 мм.

Стремление к уменьшению потери скорости ПЭ на полете привело к разработке снарядов с пулевидными удлиненными ПЭ. Пулевидные ПЭ уложены параллельно оси снаряда и за время одного оборота снаряда также совершают один оборот вокруг собственной оси и, следовательно, после выброса из корпуса будут гироскопически стабилизированы на полете.

Отечественный 30 мм шрапнельный (многоэлементный) снаряд, предназначенный для авиационных пушек Грязева-Шипунова ГШ-30, ГШ-301, ГШ-30К, разработан ГНПП «Прибор» (см. рис.7 ). Снаряд содержит 28 пуль массой 3,5 г, уложенных в четыре яруса по семь пуль в каждом. Выброс пуль из корпуса производится с помощью небольшого вышибного порохового заряда, воспламеняемого от пиротехнического замедлителя на дальности 800–1300 м от места выстрела. Масса патрона 837 г, масса снаряда 395 г, масса порохового заряда гильзы 117 г, длина патрона 283 мм, начальная скорость снаряда 875-900 м/с, вероятное отклонение начальной скорости 6м/с. Угол разлета пуль составляет 8°. Очевидным недостатком снаряда является фиксированная величина интервала времени между выстрелом и срабатыванием снаряда. Успешная стрельба такими снарядами требует высокой квалификации летчика.

Швейцарской фирмой «Эрликон-Контравес» производится 35-мм шрапнельный снаряд, AHEAD (Advanced Hit Efficiency and Destruction) для автоматических зенитных пушек, снабженных системой управления огнем (СУО), обеспечивающей подрыв снарядов на оптимальном расстоянии от цели (наземные буксируемые двуствольные системы «Скайгард» GDF-005, «Скайшилд 35», корабельные одноствольные установки «Скайшилд» и «Миллениум 35/100»). Снаряд снабжен высокоточным электронным дистанционным взрывателем, расположенным в донной части снаряда, а установка имеет в своем составе дальномер, баллистический вычислитель и надульный канал ввода временной установки. На дульном срезе орудия расположены три соленоидных кольца. С помощью первых двух колец, расположенных по ходу снаряда, производится замер скорости снаряда в данном выстреле. Измеренная величина совместно с дальностью до цели, измеренной дальномером, вводится в баллистический вычислитель, рассчитывающий полетное время, значение которого вводится в дистанционный взрыватель через кольцо с шагом установки 0,002 с.

Масса снаряда составляет 750 г, начальная скорость 1050 м/с, дульная энергия 413 кДж. Снаряд содержит 152 цилиндрических ГПЭ из вольфрамового сплава массой 3,3г (суммарная масса ГПЭ 500 г, относительная масса ГПЭ 0,67). Выброс ГПЭ происходит с разрушением снарядного корпуса. Относительная масса снаряда С q (масса в кг, отнесенная к кубу калибра в дм) составляет 17,5 кг/куб.дм, т. е. на 10 % превышает соответствующую величину для обычных осколочно-фугасных снарядов.

Снаряд предназначен для поражения самолетов и управляемых ракет на дальности до 5 км.

С методической точки зрения многоэлементный снаряд, снаряд AHEAD, боевые части НАР, заряд которых (пороховой или бризантный) не сообщает дополнительной осевой скорости, а выполняет по существу только функцию разделения, целесообразно выделить в отдельный класс так называемых кинетических пучковых снарядов (КПС), а термин «шрапнель» сохранить только за классическим шрапнельным снарядом, имеющим корпус с донным вышибным зарядом, обеспечивающим заметную дополнительную скорость ГПЭ. Примером конструкции КПС бескорпусного типа является снаряд с набором колец заданного дробления, запатентованный фирмой «Эрликон». Этот набор надет на полый стержень корпуса и поджат головным колпаком. Во внутренней полости стержня размещается небольшой заряд ВВ, рассчитанный таким образом, что он обеспечивает разрушение колец на осколки без сообщения им заметной радиальной скорости. В результате формируется узкий пучок осколков заданного дробления.

Основными недостатками пороховых шрапнелей являются следующие:

Отсутствует заряд бризантного ВВ и, как следствие, невозможно поражение укрытых целей;

Тяжелый стальной корпус (стакан) шрапнели выполняет по существу транспортировочную и ствольную функции и не используется непосредственно для поражения.

В связи с этим в последние годы началась интенсивная разработка так называемых осколочно-пучковых снарядов. Под ними понимают снаряд, снаряженный бризантным ВВ, с расположенным в передней части блоком ГПЭ, создающих осевой поток («пучок»), Являясь по виду главного поля аналогом пороховой шрапнели, снаряд выгодно отличается от нее наличием фугасного действия и продуктивным использованием металла корпуса для образования кругового осколочного поля.

Первые серийные осколочно-пучковые трассирующие снаряды HETF-T (35-мм снаряд DM42 и 50-мм снаряд M-DN191) были разработаны германской фирмой «Диль» (Diehl) для автоматической пушки Rh503 фирмы «Маузер», входящей в состав концерна «Рейнметалл» (Rheinmetall). Снаряды имеют донный взрыватель двойного действия (дистанционно-ударный), размещенный внутри корпуса снаряда и головной приемник команд, размещенный в головном пластмассовом колпаке. Приемник и взрыватель соединены электрическим проводником, проходящим через заряд ВВ. Благодаря донному инициированию заряда ВВ метание блока происходит за счет падающей детонационной волны, что увеличивает скорость метания. Легкий головной колпак не препятствует прохождению блока ГПЭ. (Рис. 8 )

Конический блок 35-мм снаряда DM41, содержащий 325 шт. сферических ГПЭ диаметром 2,5 мм, выполненных из тяжелого сплава (ориентировочная масса 0,14 г) опирается непосредственно на передний торец заряда ВВ массой 65 г. Масса снаряда DM41 – 610 г, длина снаряда 200мм (5,7 клб), общая масса патрона 1670 г, масса заряда пороха в патроне 341 г, начальная скорость снаряда 1150 м/с. Разлет ГПЭ происходит в корпусе с углом 40°. Ввод команды на вид действия и ввод временной установки производится бесконтактным способом непосредственно перед заряжанием.

В известной мере критическим элементом данной бездиафрагменной конструкции является прямая опора ГПЭ на заряд ВВ. При массе блока 0,14 х 325 = 45 г и ствольной перегрузке 50000 блок ГПЭ при выстреле будет давить на заряд ВВ с силой 2,25 т, что в принципе может привести к разрушению и даже воспламенению заряда ВВ. Обращает на себя внимание чрезмерно малая масса ГПЭ (0,14 г), явно недостаточная для поражения даже легких целей. Определенным недостатком конструкции является сферическая форма ГПЭ, понижающая плотность укладки блока и приводящая к уменьшению скорости его метания за счет потерь энергии на деформацию ГПЭ. Сопоставление 35-мм снарядов AHEAD фирмы «Эрликон» и HETF-T фирмы «Диль» приведено в таблице 2 .

таблица 2

Характеристика AHEAD HETF-T

Тип снаряда

Шрапнель Осколочно-пучковый

Взрыватель

Дистанционный Дистанционно-ударный

Ввод команд

После вылета При заряжании

Масса снаряда, г

750 610

Количество ГПЭ

152 325

Масса одного ГПЭ, г

3,3 0,14

Суммарная масса ГПЭ, г

500 45

Угол разлета, град.

10 40

Форма ГПЭ

цилиндр сфера

Осколочное круговое поле

нет есть

Проникающе-фугасное действие

нет есть

Стоимость (расч.-ориентир.), у.е.с.

5–6 1

Сравнительная оценка снарядов по критерию «стоимость–эффективность» при стрельбе по воздушным и наземным целям не выявляет ощутимого превосходства одного снаряда над другим. Это может показаться странным, учитывая огромную разницу масс осевого потока (у снаряда AHEAD на порядок больше). Объяснение, с одной стороны, заключается в очень высокой стоимости снарядов AHEAD (снаряд на 2/3 состоит из дорогостоящего и дефицитного тяжелого сплава), с другой – в резком увеличении возможности адаптации осколочно-пучкового снаряда HETF-T к условиям боевого применения. Например, при действии по противокорабельным крылатым ракетам (ПКР) оба снаряда одинаково не обеспечивают поражения цели по типу «мгновенное разрушение цели в воздухе», достигаемого пробиванием бронебойного корпуса и прониканием ГПЭ в заряд ВВ с возбуждением его детонации. В то же время прямое попадание в планер ПКР разрывного снаряда HETF-T фирмы «Диль» при установке взрывателя на ударное действие наносит значительно больший ущерб, чем прямое попадание инертного AHEAD, которое может быть реализовано установкой взрывателя на максимальное время.

Фирма «Диль» в настоящее время занимает ведущее положение в области разработки осколочных боеприпасов направленного осевого действия. К числу ее наиболее известных запатентованных разработок осколочно-пучковых боеприпасов относятся танковый снаряд, разделяющаяся ствольная мина, кассетный боевой элемент, спускающийся на парашюте с адаптивным раздельно-осевым действием. (Рис. 9, 10 ).

Значительный интерес представляют разработки шведской фирмы «Бофорс АБ». Ею запатентован осколочно-пучковый вращающийся снаряд с потоком ГПЭ, направленным под углом к оси снаряда. Подрыв в момент в момент совмещения оси блока ГПЭ с направлением на цель обеспечивается датчиком цели. Донное инициирование заряда ВВ обеспечивается донным детонатором, смещенным относительно оси снаряда и соединенным проводной связью с датчиком цели. (Рис.11 )

Фирмой «Рейнметалл» (ФРГ) запатентован оперенный осколочно-пучковый снаряд к гладкоствольной танковой пушке, предназначенный в первую очередь для борьбы с противотанковыми вертолетами (пат. №5261629 США). В головном отсеке снаряда расположен блок датчиков цели. После определения положения цели относительно траектории снаряда производится с помощью импульсных реактивных двигателей доворот оси снаряда на цель, отстрел головного отсека с помощью кольцевого заряда ВВ и подрыв снаряда с формированием направленного на цель потока ГПЭ. Отстрел головного отсека необходим для беспрепятственного прохода блока ГПЭ.

Отечественные патенты на осколочно-пучковые снаряды №2018779, 2082943,2095739, 2108538, 21187790 (патентообладатель НИИ СМ МГТУ им. Н.Э.Баумана) охватывают наиболее перспективные направления развития этих снарядов (Рис.12, 13 ). Снаряды предназначены как для поражения воздушных целей, так и для глубинного поражения наземных целей, и оснащены донными взрывателями дистанционного или неконтактного (типа «дальномер») действия. Взрыватель оснащен ударным механизмом с тремя установками, что позволяет использовать снаряд при стрельбе на обычные виды действия штатных осколочно-фугасных снарядов – осколочно-компрессионное, осколочно-фугасное и проникающе-фугасное. Мгновенный осколочный подрыв происходит с помощью головного контактного узла, имеющего электрическую связь с донным взрывателем. Ввод команды, определяющей вид действия, производится через головной или донный приемники команд.

Скорость блока ГПЭ как правило не превышает 400–500 м/с, т. е. на его ускорение расходуется весьма незначительная часть энергии заряда ВВ. Это объясняется с одной стороны малой площадью контакта заряда ВВ с блоком ГПЭ, а с другой – быстрым спадом давления продуктов детонации вследствие расширения снарядной оболочки. По данным высокочастотной оптической съемки и результатам компьютерного моделирования видно, что процесс радиального разлета оболочки идет значительно быстрее, чем процесс осевого движения блока. Стремление увеличить долю энергии заряда, переходящей в кинетическую энергию осевого движения ГПЭ, породило много предложений по реализации многоторцевых конструкций. (Рис.10 ).

Одной из наиболее перспективных сфер применения пучковых снарядов является танковая артиллерия. В условиях насыщения поля боя противотанковыми системами оружия проблема обороны танка от них является чрезвычайно острой. В тенденциях развития танкового оружия в последнее время наблюдается стремление к реализации принципа «бей равного», согласно которому основной задачей танка является борьба с танками противника как представляющими главную опасность, а оборона его от танкоопасных средств должна осуществляться сопровождающими его боевыми машинами пехоты, снабженными автоматическими пушками, и самоходными зенитными установками. Кроме того, считается несущественной проблема борьбы с танкоопасными средствами, находящимися в сооружениях, например в зданиях, при боевых действиях в населенных пунктах. При таком подходе осколочно-фугасный снаряд в боекомплекте танка считается ненужным. Например, в боекомплекте 120-мм гладкоствольной пушки германского танка «Леопард-2» имеется всего два типа снаряда – бронебойный подкалиберный DM13 и осколочно-кумулятивный (многоцелевой) DM12. Крайним выражением этой тенденции являются недавно принятые решения о том, что в состав боекомплекта разрабатываемых 140-мм гладкоствольных пушек США (ХМ291) и Германии (NPzK) будет входить только один тип снаряда – оперенный бронебойный подкалиберный.

Следует отметить, что концепция, исходящая из представления о том, что главную угрозу для танка создает танк противника, не подтверждается опытом военных действий. Так, в ходе четвертой арабо-израильской войны 1973 года потери танков распределялись следующим образом: от действия ПТРК – 50%, от действий авиации, ручных противотанковых гранатометов, противотанковых мин – 28%, от огня танков только – 22%.

Другая концепция, напротив, исходит из взглядов на танк как на автономную систему оружия, способную самостоятельно решать все боевые задачи, в том числе и задачу самообороны. Эта задача не может быть решена штатными осколочно-фугасными снарядами с ударными взрывателями по той причине, что при настильной стрельбе этими снарядами на осколочное поражение одиночных целей крайне неудовлетворительно согласуются плотность рассеивания точек падения снарядов и координатный закон поражения. Эллипс рассеивания, имеющий на дальности 2 км отношение больших осей примерно 50:1, вытянут в направлении стрельбы, тогда как зона поражения осколками располагается перпендикулярно этому направлению. В результате реализуется лишь очень небольшая площадь, где эллипс рассеивания и область поражения накладываются друг нa друга. Следствием этого является низкая вероятность поражения одиночной цели одним выстрелом, по различными оценкам не превышающая 0,15…0,25.

Конструкция многофункционального осколочно-фугасно-пучкового оперенного снаряда для гладкоствольной танковой пушки защищена патентами №№ 2018779, 2108538 РФ. Наличие тяжелого головного блока ГПЭ и связанное с этим смещение центра масс вперед увеличивает аэродинамическую устойчивость снаряда на полете и точность стрельбы. Разгрузка заряда ВВ от давления, создаваемого наседающей массой блока ГПЭ при выстреле, осуществляется вкладной диафрагмой, опирающейся на кольцевой уступ в корпусе, либо диафрагмой, выполненной заодно с корпусом.

ГПЭ блока выполнены из стали или тяжелого сплава на основе вольфрама (плотность 16…18 г/куб.см) в форме, обеспечивающей их плотную укладку в блоке, например, в форме шестигранных призм. Плотная укладка ГПЭ способствует сохранению их формы в процессе взрывного метания и уменьшает потери энергии заряда ВВ на деформацию ГПЭ. Требуемый угол разлета (обычно 10…15°) и оптимальное распределение ГПЭ в пучке могут быть обеспечены за счет изменения толщины оголовья, формы диафрагмы, размещения внутри блока ГПЭ вкладышей из легкосжимаемого материала, изменения формы фронта падающей детонационной волны. Предусмотрено управление углом разлета блока с помощью заряда ВВ, размещенного по его оси. Интервал времени между подрывами основного и осевого зарядов в общем случае регулируется системой управления подрывом снаряда, что позволяет получать оптимальные пространственные распределения ГПЭ и осколков корпуса в широком диапазоне условий стрельбы. Головной колпак с головным контактным узлом, заполненный внутри пенополиуретаном, должен иметь минимальную массу, что обеспечивает минимальную потерю скорости ГПЭ при взрывном метании. Более радикальным способом является сброс головного колпака с помощью пиротехнического устройства перед подрывом основного заряда или его разрушение с помощью заряда-ликвидатора. При этом должно быть исключено разрушающее воздействие продуктов детонации на блок ГПЭ. Оптимальная масса блока ГПЭ варьируется в пределах 0,1…0,2 от массы снаряда. Скорость выброса блока ГПЭ из корпуса в зависимости от его массы, характеристик заряда ВВ и других конструктивных параметров изменяется в диапазоне 300…500 м/с, начальная результирующая скорость ГПЭ при скорости снаряда 800 м/с составляет 1100…1300 м/с.

Оптимальная масса одиночного поражающего элемента, рассчитанная по условию поражения живой силы, оснащенной тяжелыми противопульными бронежилетами 5-го класса защиты по ГОСТ Р50744-95 «Бронеодежда», составляет 5 г. При этом обеспечивается также поражение большей части номенклатуры небронированной техники. При необходимости поражения более тяжелых целей со стальными эквивалентами 10… 15 мм масса ГПЭ должна быть увеличена, что приведет к снижению плотности потока ГПЭ. Оптимальные массы ГПЭ для поражения различных классов целей, уровни кинетической энергии, числа ГПЭ при массе блока 2,5 кг и плотности поля при угле полураствора 10° на дальности 20 м (радиус круга поражения 3,5 м, площадь круга 38 кв.м) приведены в таблице 3 .

таблица 3

Класс целей

Масса
одного
ГПЭ, г
Кинетич. энергия, дж, при скорости число
ГПЭ
Плот-
ность,
1/куб.м
500 м/с 1000 м/с

Живая сила в бронежилетах 5-го класса и небронированная техника

5 625 2500 500 13,2

Легкобронированные цели класса «А» (БТР, бронированные вертолеты)

10 1250 5000 250 6,6

Легкобронированные цели класса «В» (боевые машины пехоты)

20 2500 10000 125 3,3

Включение в состав боекомплектов танков двух типов осколочно-пучковых снарядов, предназначенных соответственно для борьбы с живой силой и бронетехникой, вряд ли осуществимо, учитывая ограниченный размер боекомплекта (в танке Т-90С – 43 выстрела) и без того уже большую номенклатуру снарядов (бронебойный оперенный подкалиберный снаряд (БОПС), кумулятивный снаряд, осколочно-фугасный снаряд, управляемый снаряд 9К119 «Рефлекс»). В отдаленной перспективе при появлении в танке быстродействующего сборочного манипулятора возможно применение модульных конструкций осколочно-пучковых снарядов со сменными головными блоками различного назначения (патент №2080548 РФ, НИИ СМ).

Ввод команды, определяющей вид действия, и ввод временной установки при стрельбе с траекторным разрывом производится через головной или донный приемники команд. Цикл работы системы управления подрывом включает в себя определение дальности до цели с помощью лазерного дальномера, расчет на бортовом компьютере полетного времени до упрежденной точки подрыва и ввод этого времени во взрыватель с помощью АУДВ (автоматического установщика дистанционного взрывателя). Так как упрежденная дальность подрыва является случайной величиной, дисперсия которой определяется суммой дисперсий дальности до цели, измеренной дальномером, и пути, пройденного снарядом к моменту подрыва, а указанные дисперсии достаточно велики, то и разброс упрежденной дальности оказывается чрезмерно большим (например, ±30 м при номинальном значении упрежденной дальности 20 м). Это обстоятельство предъявляет достаточно жесткие требования к точности системы управления подрывом (шаг установки не более 0,01 с при квадратическом отклонении того же порядка). Одним из возможных путей повышения точности является исключение ошибки начальной скорости снаряда. С этой целью после вылета снаряда производится бесконтактным способом измерение его скорости, полученное конкретное значение вводится в расчет временной установки, а затем последняя подается с помощью кодированного лазерного луча со скорость 20…40 кбит/с через канал трубки стабилизатора в оптическое окно донного взрывателя. При стрельбе по целям, четко отделяющимся от окружающей среды, вместо дистанционного взрывателя может быть использован неконтактный взрыватель типа «Дальномер».

Предложена конструкция осколочно-пучкового снаряда с осевым расположением цилиндрического блока ГПЭ внутри заряда ВВ. Перспективной является конструкция снаряда, создающего пучок ГПЭ с овальным поперечным сечением, стелющийся вдоль поверхности земли. В патентах №№ 2082943, 2095739 предложены конструкции осколочно-кинетических снарядов соответственно с передним и задним расположением блока ГПЭ, ударной трубкой и зарядом детонационно-способного твердого топлива двойного назначения. В зависимости от условий применения этот заряд используется в качестве разрывного (как ВВ) или в качестве ускорительного (как твердое ракетное топливо). Второй основной идеей разработки является разрушение корпуса на осколки ударом по его внутренней поверхности трубки, разгоняемой взрывом. Такая схема обеспечивает так называемое разрушение без метания, т. е. разрушение корпуса без сообщения его осколкам заметной радиальной скорости, что позволяет включить их в осевой поток. Реализация полноценного дробления при ударе трубкой была подтверждена экспериментально. (Рис.14, 15 )

Значительный интерес представляют «гибридные» конструкции снарядов, в которых используются как пороховые, так и бризантные заряды. Примерами могут служить шрапнельный снаряд с дроблением корпуса после выброса блока стреловидных ПЭ (Патент №2079099 РФ, НИИ СМ), шведский снаряд «Р» с пороховым выбросом метательных блоков, содержащих заряд ВВ, адаптивный снаряд с выбрасываемым цилиндрическим слоем ГПЭ и «поршнем», содержащем заряд ВВ (заявка №98117004, НИИ СМ). (Рис.16, 17 )

Разработка осколочно-пучковых снарядов к малокалиберным автоматическим пушкам (МКАП) сдерживается ограничениями, накладываемыми величиной калибра. В настоящее время практически монопольным калибром отечественных МКАП Сухопутных войск, ВВС и ВМФ является калибр 30 мм. 23-мм МКАП еще сохраняются на вооружении (самоходная установка «Шилка», шестиствольная авиационная пушка ГШ-6-23 и др.), но большинство специалистов считает, что они уже не удовлетворяют современным требованиям по эффективности. Использование одного калибра во всех видах Вооруженных сил и унификация боеприпасов является несомненным преимуществом. В то же время жесткая фиксация калибра уже в настоящее время начнет ограничивать боевые возможности МКАП, в особенности, при борьбе с ПКР. В частности, проработки показывают, что реализация эффективного осколочно-пучкового снаряда в этом калибре очень затруднена. В то же время расчеты по критерию максимума вероятности поражения цели очередью при фиксированных числе очередей и массе системы оружия, включающей огневую установку и боекомплект, показывают, что калибр 30 мм не оптимален, а оптимум находится в диапазоне 35-45 мм. Для разработки новых МКАП предпочтительным является калибр 40 мм, являющийся членом ряда нормальных линейных размеров Ra10, обеспечивающий возможность межвидовой унификации (ВМС, ВВС, Сухопутные войска), мировой стандартизации и расширения экспорта с учетом широкого распространения 40-мм МКАП за рубежом (буксируемый ЗАК L70 «Бофорс», боевая машина пехоты CV-90 , корабельные ЗАК «Тринити», «Фаст Форти», «Дардо» и др.). Все перечисленные 40-мм системы кроме «Дардо» и «Фаст Форти» являются одноствольными с низкой скорострельностью 300 выстр./мин. Двуствольные системы «Дардо» и «Фаст Форти» имеют общую скорострельность соответственно 600 и 900 выстр./мин. Фирмой «Эллайент Тексистемз» (США) разработана 40-мм пушка CTWS с телескопическим выстрелом и поперечной схемой заряжания. Пушка имеет скорострельность 200 выстр./мин.

Из вышеизложенного ясно, что в ближайшие годы следует ожидать появления оружия нового поколения 40-мм пушек с вращающимся блоком стволов, способных разрешить рассмотренные выше противоречие.

Одно из распространенных возражений против введения в систему вооружений калибра 40 мм основано на трудностях использования 40-мм пушек на летательных аппаратах из-за больших усилий отдачи (так называемой динамической несовместимости), что исключает возможность распространения межвидовой унификации на вооружение ВВС и тактической авиации Сухопутных войск.

В данном случае следует отметить, что 40-мм МКАП будут предназначены в первую очередь для использования в корабельных системах ПВО, где ограничения по суммарной массе системы оружия не является чрезмерно жесткими. Очевидно, что целесообразно сочетание в системе ПВО корабля пушек обоих калибров (30 и 40 мм) с оптимальным разделением между ними диапазонов дальностей перехвата ПКР. Во вторых, указанное возражение опровергается историческим опытом. МКАП крупных калибров успешно применялись в авиации в период второй мировой войны и после нее. К ним относятся отечественные авиационные пушки Нудельмана-Суранова НС-37, НС-45 и 37-мм американская пушка М-4 истребителя Р-39 «Аэрокобра». 37-мм пушка НС-37 (масса снаряда 735 г, начальная скорость 900 м/с, скорострельность 250 выстр./мин) устанавливалась на истребителе ЯК-9Т (боекомплект 30 патронов) и на штурмовиках ИЛ-2 (две пушки с боекомплектом 50 патронов каждая). На заключительном периоде Великой Отечественной войны успешно применялись истребители ЯК-9К с 45-мм пушкой НС-45 (масса снаряда 1065 г, начальная скорость 850 м/с, скорострельность 250 выстр./мин). В послевоенный период пушки НС-37, НС-37Д устанавливались на реактивных истребителях.

Переход на калибр 40 мм открывает возможности разработки не только осколочно-пучковых снарядов, но и других перспективных снарядов, в том числе корректируемых, кумулятивных, с программируемым неконтактным взрывателем, с кольцевым поражающим элементом и др.

Весьма перспективную сферу применения принципа взрывного осевого метания ГПЭ образуют надкалиберные гранаты подствольных, ручных и ружейных гранатометов. Надкалиберная осколочно-пучковая граната к подствольному гранатомету (патент №2118788 РФ, НИИ СМ) предназначена в основном для настильной стрельбы на небольшие дистанции (до 100 м) при самообороне. Граната содержит калиберную часть с вышибным зарядом и выступами, входящими в нарезы гранатного ствола, и надкалиберную часть, содержащую дистанционный взрыватель, заряд ВВ и слой ГПЭ. Величина диаметра надкалиберной части зависит от расстояния между осями пулевого и гранатного ствола.

Общая масса перспективной пучковой гранаты к 40-мм подствольному гранатомету ГП-25 составляет 270 г, начальная скорость гранаты – 72 м/с, диаметр надкалиберной части – 60 мм, масса заряда ВВ (флегматизированный гексоген A-IX-1) – 60 г, готовые поражающие элементы в форме кубика с ребром 2,5 мм массой 0,25 г выполнены из вольфрамового сплава с плотностью 16 г/куб.см; укладка ГПЭ однослойная, количество ГПЭ – 400 шт., скорость метания – 1200 м/с, убойный интервал – 40 м от точки разрыва, шаг установки взрывателя – 0,1 с (Рис.18 ).

В настоящей статье вопросы развития осколочных боеприпасов осевого действия рассмотрены в основном применительно к ствольным снарядам, в той или иной степени являющихся развитием классической шрапнели. В широком же аспекте принцип поражения целей направленными потоками ГПЭ используются в самых разнообразных видах оружия (боевые части ЗУР и НАР, инженерные направленные осколочные мины, осколочные боеприпасы направленного действия активной защиты танков, ствольное картечное оружие и т. п.).

Понравилась статья? Поделиться с друзьями: