График функции квадратного уравнения. Квадратичная функция

Функция вида , где называется квадратичной функцией .

График квадратичной функции – парабола .


Рассмотрим случаи:

I СЛУЧАЙ, КЛАССИЧЕСКАЯ ПАРАБОЛА

То есть , ,

Для построения заполняем таблицу, подставляя значения x в формулу:


Отмечаем точки (0;0); (1;1); (-1;1) и т.д. на координатной плоскости (чем с меньшим шагом мы берем значения х (в данном случае шаг 1), и чем больше берем значений х, тем плавнее будет кривая), получаем параболу:


Нетрудно заметить, что если мы возьмем случай , , , то есть , то мы получим параболу, симметричную относительно оси (ох). Убедиться в этом несложно, заполнив аналогичную таблицу:


II СЛУЧАЙ, «a» ОТЛИЧНО ОТ ЕДИНИЦЫ

Что же будет, если мы будем брать , , ? Как изменится поведение параболы? При title="Rendered by QuickLaTeX.com" height="20" width="55" style="vertical-align: -5px;"> парабола изменит форму, она “похудеет” по сравнению с параболой (не верите – заполните соответствующую таблицу – и убедитесь сами):


На первой картинке (см. выше) хорошо видно, что точки из таблицы для параболы (1;1), (-1;1) трансформировались в точки (1;4), (1;-4), то есть при тех же значениях ордината каждой точки умножилась на 4. Это произойдет со всеми ключевыми точками исходной таблицы. Аналогично рассуждаем в случаях картинок 2 и 3.

А при парабола «станет шире» параболы :


Давайте подытожим:

1) Знак коэффициента отвечает за направление ветвей. При title="Rendered by QuickLaTeX.com" height="14" width="47" style="vertical-align: 0px;"> ветви направлены вверх, при - вниз.

2) Абсолютная величина коэффициента (модуля) отвечает за “расширение”, “сжатие” параболы. Чем больше , тем у’же парабола, чем меньше |a|, тем шире парабола.

III СЛУЧАЙ, ПОЯВЛЯЕТСЯ «С»

Теперь давайте введем в игру (то есть рассматриваем случай, когда ), будем рассматривать параболы вида . Нетрудно догадаться (вы всегда можете обратиться к таблице), что будет происходить смещение параболы вдоль оси вверх или вниз в зависимости от знака :



IV СЛУЧАЙ, ПОЯВЛЯЕТСЯ «b»

Когда же парабола “оторвется” от оси и будет, наконец, “гулять” по всей координатной плоскости? Когда перестанет быть равным .

Здесь для построения параболы нам понадобится формула для вычисления вершины: , .

Так вот в этой точке (как в точке (0;0) новой системы координат) мы будем строить параболу , что уже нам по силам. Если имеем дело со случаем , то от вершины откладываем один единичный отрезок вправо, один вверх, – полученная точка – наша (аналогично шаг влево, шаг вверх – наша точка); если имеем дело с , например, то от вершины откладываем один единичный отрезок вправо, два – вверх и т.д.

Например, вершина параболы :

Теперь главное уяснить, что в этой вершине мы будем строить параболу по шаблону параболы , ведь в нашем случае.

При построении параболы после нахождения координат вершины очень удобно учитывать следующие моменты:

1) парабола обязательно пройдет через точку . Действительно, подставив в формулу x=0, получим, что . То есть ордината точки пересечения параболы с осью (оу), это . В нашем примере (выше), парабола пересекает ось ординат в точке , так как .

2) осью симметрии параболы является прямая , поэтому все точки параболы будут симметричны относительно нее. В нашем примере, мы сразу берем точку (0; -2) и строим ей симметричную относительно оси симметрии параболы, получим точку (4; -2), через которую будет проходить парабола.

3) Приравнивая к , мы узнаем точки пересечения параболы с осью (ох). Для этого решаем уравнение . В зависимости от дискриминанта, будем получать одну (, ), две ( title="Rendered by QuickLaTeX.com" height="14" width="54" style="vertical-align: 0px;">, ) или нИсколько () точек пересечения с осью (ох) . В предыдущем примере у нас корень из дискриминанта – не целое число, при построении нам особо нет смысла находить корни, но мы видим четко, что две точки пересечения с осью (ох) у нас будут (так как title="Rendered by QuickLaTeX.com" height="14" width="54" style="vertical-align: 0px;">), хотя, в общем, это видно и без дискриминанта.

Итак, давайте выработаем

Алгоритм для построения параболы, если она задана в виде

1) определяем направление ветвей (а>0 – вверх, a<0 – вниз)

2) находим координаты вершины параболы по формуле , .

3) находим точку пересечения параболы с осью (оу) по свободному члену , строим точку, симметричную данной относительно оси симметрии параболы (надо заметить, бывает, что эту точку невыгодно отмечать, например, потому, что значение велико… пропускаем этот пункт…)

4) В найденной точке – вершине параболы (как в точке (0;0) новой системы координат) строим параболу . Если title="Rendered by QuickLaTeX.com" height="20" width="55" style="vertical-align: -5px;">, то парабола становится у’же по сравнению с , если , то парабола расширяется по сравнению с

5) Находим точки пересечения параболы с осью (оу) (если они еще сами “не всплыли”), решая уравнение

Пример 1


Пример 2


Замечание 1. Если же парабола изначально нам задана в виде , где – некоторые числа (например, ), то построить ее будет еще легче, потому что нам уже заданы координаты вершины . Почему?

Возьмем квадратный трехчлен и выделим в нем полный квадрат: Посмотрите, вот мы и получили, что , . Мы с вами ранее называли вершину параболы , то есть теперь , .

Например, . Отмечаем на плоскости вершину параболы , понимаем, что ветви направлены вниз, парабола расширена (относительно ). То есть выполняем пункты 1; 3; 4; 5 из алгоритма построения параболы (см. выше).

Замечание 2. Если парабола задана в виде, подобном этому (то есть представлен в виде произведения двух линейных множителей), то нам сразу видны точки пересечения параболы с осью (ох). В данном случае – (0;0) и (4;0). В остальном же действуем согласно алгоритму, раскрыв скобки.

На уроках математики в школе Вы уже познакомились с простейшими свойствами и графиком функции y = x 2 . Давайте расширим знания по квадратичной функции .

Задание 1.

Построить график функции y = x 2 . Масштаб: 1 = 2 см. Отметьте на оси Oy точку F (0; 1/4). Циркулем или полоской бумаги измерьте расстояние от точки F до какой-нибудь точки M параболы. Затем приколите полоску в точке M и поверните ее вокруг этой точки так, чтобы она стала вертикальной. Конец полоски опустится немного ниже оси абсцисс (рис. 1) . Отметьте на полоске, насколько она выйдет за ось абсцисс. Возьмите теперь другую точку на параболе и повторите измерение еще раз. Насколько теперь опустился край полоски за ось абсцисс?

Результат: какую бы точку на параболе y = x 2 вы не взяли, расстояние от этой точки до точки F(0; 1/4) будет больше расстояния от той же точки до оси абсцисс всегда на одно и то же число – на 1/4.

Можно сказать иначе: расстояние от любой точки параболы до точки (0; 1/4) равно расстоянию от той же точки параболы до прямой y = -1/4. Эта замечательная точка F(0; 1/4) называется фокусом параболы y = x 2 , а прямая y = -1/4 – директрисой этой параболы. Директриса и фокус есть у каждой параболы.

Интересные свойства параболы:

1. Любая точка параболы равноудалена от некоторой точки, называемой фокусом параболы, и некоторой прямой, называемой ее директрисой.

2. Если вращать параболу вокруг оси симметрии (например, параболу y = x 2 вокруг оси Oy), то получится очень интересная поверхность, которая называется параболоидом вращения.

Поверхность жидкости во вращающемся сосуде имеет форму параболоида вращения. Вы можете увидеть эту поверхность, если сильно помешаете ложечкой в неполном стакане чая, а потом вынете ложечку.

3. Если в пустоте бросить камень под некоторым углом к горизонту, то он полетит по параболе (рис. 2).

4. Если пересечь поверхность конуса плоскостью, параллельной какой-либо одной его образующей, то в сечении получится парабола (рис. 3) .

5. В парках развлечений иногда устраивают забавный аттракцион «Параболоид чудес». Каждому, из стоящих внутри вращающегося параболоида, кажется, что он стоит на полу, а остальные люди каким-то чудом держаться на стенках.

6. В зеркальных телескопах также применяют параболические зеркала: свет далекой звезды, идущий параллельным пучком, упав на зеркало телескопа, собирается в фокус.

7. У прожекторов зеркало обычно делается в форме параболоида. Если поместить источник света в фокусе параболоида, то лучи, отразившись от параболического зеркала, образуют параллельный пучок.

Построение графика квадратичной функции

На уроках математики вы изучали получение из графика функции y = x 2 графиков функций вида:

1) y = ax 2 – растяжение графика y = x 2 вдоль оси Oy в |a| раз (при |a| < 0 – это сжатие в 1/|a| раз, рис. 4 ).

2) y = x 2 + n – сдвиг графика на n единиц вдоль оси Oy, причем, если n > 0, то сдвиг вверх, а если n < 0, то вниз, (или же можно переносить ось абсцисс).

3) y = (x + m) 2 – сдвиг графика на m единиц вдоль оси Ox: если m < 0, то вправо, а если m > 0, то влево, (рис. 5) .

4) y = -x 2 – симметричное отображение относительно оси Ox графика y = x 2 .

Подробнее остановимся на построении графика функции y = a(x – m) 2 + n .

Квадратичную функцию вида y = ax 2 + bx + c всегда можно привести к виду

y = a(x – m) 2 + n, где m = -b/(2a), n = -(b 2 – 4ac)/(4a).

Докажем это.

Действительно,

y = ax 2 + bx + c = a(x 2 + (b/a) x + c/a) =

A(x 2 + 2x · (b/a) + b 2 /(4a 2) – b 2 /(4a 2) + c/a) =

A((x + b/2a) 2 – (b 2 – 4ac)/(4a 2)) = a(x + b/2a) 2 – (b 2 – 4ac)/(4a).

Введем новые обозначения.

Пусть m = -b/(2a) , а n = -(b 2 – 4ac)/(4a) ,

тогда получим y = a(x – m) 2 + n или y – n = a(x – m) 2 .

Сделаем еще замены: пусть y – n = Y, x – m = X (*).

Тогда получим функцию Y = aX 2 , графиком которой является парабола.

Вершина параболы находится в начале координат. X = 0; Y = 0.

Подставив координаты вершины в (*), получаем координаты вершины графика y = a(x – m) 2 + n: x = m, y = n.

Таким образом, для того, чтобы построить график квадратичной функции, представленной в виде

y = a(x – m) 2 + n

путем преобразований, можно действовать следующим образом:

a) построить график функции y = x 2 ;

б) путем параллельного переноса вдоль оси Ox на m единиц и вдоль оси Oy на n единиц – вершину параболы из начала координат перевести в точку с координатами (m; n) (рис. 6) .

Запись преобразований:

y = x 2 → y = (x – m) 2 → y = a(x – m) 2 → y = a(x – m) 2 + n.

Пример.

С помощью преобразований построить в декартовой системе координат график функции y = 2(x – 3) 2 2.

Решение.

Цепочка преобразований:

y = x 2 (1) → y = (x – 3) 2 (2) → y = 2(x – 3) 2 (3) → y = 2(x – 3) 2 – 2 (4) .

Построение графика изображено на рис. 7 .

Вы можете практиковаться в построении графиков квадратичной функции самостоятельно. Например, постройте в одной системе координат с помощью преобразований график функции y = 2(x + 3) 2 + 2. Если у вас возникнут вопросы или же вы захотите получить консультацию учителя, то у вас есть возможность провести бесплатное 25-минутное занятие с онлайн репетитором после . Для дальнейшей работы с преподавателем вы сможете выбрать подходящий вам

Остались вопросы? Не знаете, как построить график квадратичной функции?
Чтобы получить помощь репетитора – .
Первый урок – бесплатно!

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

На уроках математики в школе Вы уже познакомились с простейшими свойствами и графиком функции y = x 2 . Давайте расширим знания по квадратичной функции .

Задание 1.

Построить график функции y = x 2 . Масштаб: 1 = 2 см. Отметьте на оси Oy точку F (0; 1/4). Циркулем или полоской бумаги измерьте расстояние от точки F до какой-нибудь точки M параболы. Затем приколите полоску в точке M и поверните ее вокруг этой точки так, чтобы она стала вертикальной. Конец полоски опустится немного ниже оси абсцисс (рис. 1) . Отметьте на полоске, насколько она выйдет за ось абсцисс. Возьмите теперь другую точку на параболе и повторите измерение еще раз. Насколько теперь опустился край полоски за ось абсцисс?

Результат: какую бы точку на параболе y = x 2 вы не взяли, расстояние от этой точки до точки F(0; 1/4) будет больше расстояния от той же точки до оси абсцисс всегда на одно и то же число – на 1/4.

Можно сказать иначе: расстояние от любой точки параболы до точки (0; 1/4) равно расстоянию от той же точки параболы до прямой y = -1/4. Эта замечательная точка F(0; 1/4) называется фокусом параболы y = x 2 , а прямая y = -1/4 – директрисой этой параболы. Директриса и фокус есть у каждой параболы.

Интересные свойства параболы:

1. Любая точка параболы равноудалена от некоторой точки, называемой фокусом параболы, и некоторой прямой, называемой ее директрисой.

2. Если вращать параболу вокруг оси симметрии (например, параболу y = x 2 вокруг оси Oy), то получится очень интересная поверхность, которая называется параболоидом вращения.

Поверхность жидкости во вращающемся сосуде имеет форму параболоида вращения. Вы можете увидеть эту поверхность, если сильно помешаете ложечкой в неполном стакане чая, а потом вынете ложечку.

3. Если в пустоте бросить камень под некоторым углом к горизонту, то он полетит по параболе (рис. 2).

4. Если пересечь поверхность конуса плоскостью, параллельной какой-либо одной его образующей, то в сечении получится парабола (рис. 3) .

5. В парках развлечений иногда устраивают забавный аттракцион «Параболоид чудес». Каждому, из стоящих внутри вращающегося параболоида, кажется, что он стоит на полу, а остальные люди каким-то чудом держаться на стенках.

6. В зеркальных телескопах также применяют параболические зеркала: свет далекой звезды, идущий параллельным пучком, упав на зеркало телескопа, собирается в фокус.

7. У прожекторов зеркало обычно делается в форме параболоида. Если поместить источник света в фокусе параболоида, то лучи, отразившись от параболического зеркала, образуют параллельный пучок.

Построение графика квадратичной функции

На уроках математики вы изучали получение из графика функции y = x 2 графиков функций вида:

1) y = ax 2 – растяжение графика y = x 2 вдоль оси Oy в |a| раз (при |a| < 0 – это сжатие в 1/|a| раз, рис. 4 ).

2) y = x 2 + n – сдвиг графика на n единиц вдоль оси Oy, причем, если n > 0, то сдвиг вверх, а если n < 0, то вниз, (или же можно переносить ось абсцисс).

3) y = (x + m) 2 – сдвиг графика на m единиц вдоль оси Ox: если m < 0, то вправо, а если m > 0, то влево, (рис. 5) .

4) y = -x 2 – симметричное отображение относительно оси Ox графика y = x 2 .

Подробнее остановимся на построении графика функции y = a(x – m) 2 + n .

Квадратичную функцию вида y = ax 2 + bx + c всегда можно привести к виду

y = a(x – m) 2 + n, где m = -b/(2a), n = -(b 2 – 4ac)/(4a).

Докажем это.

Действительно,

y = ax 2 + bx + c = a(x 2 + (b/a) x + c/a) =

A(x 2 + 2x · (b/a) + b 2 /(4a 2) – b 2 /(4a 2) + c/a) =

A((x + b/2a) 2 – (b 2 – 4ac)/(4a 2)) = a(x + b/2a) 2 – (b 2 – 4ac)/(4a).

Введем новые обозначения.

Пусть m = -b/(2a) , а n = -(b 2 – 4ac)/(4a) ,

тогда получим y = a(x – m) 2 + n или y – n = a(x – m) 2 .

Сделаем еще замены: пусть y – n = Y, x – m = X (*).

Тогда получим функцию Y = aX 2 , графиком которой является парабола.

Вершина параболы находится в начале координат. X = 0; Y = 0.

Подставив координаты вершины в (*), получаем координаты вершины графика y = a(x – m) 2 + n: x = m, y = n.

Таким образом, для того, чтобы построить график квадратичной функции, представленной в виде

y = a(x – m) 2 + n

путем преобразований, можно действовать следующим образом:

a) построить график функции y = x 2 ;

б) путем параллельного переноса вдоль оси Ox на m единиц и вдоль оси Oy на n единиц – вершину параболы из начала координат перевести в точку с координатами (m; n) (рис. 6) .

Запись преобразований:

y = x 2 → y = (x – m) 2 → y = a(x – m) 2 → y = a(x – m) 2 + n.

Пример.

С помощью преобразований построить в декартовой системе координат график функции y = 2(x – 3) 2 2.

Решение.

Цепочка преобразований:

y = x 2 (1) → y = (x – 3) 2 (2) → y = 2(x – 3) 2 (3) → y = 2(x – 3) 2 – 2 (4) .

Построение графика изображено на рис. 7 .

Вы можете практиковаться в построении графиков квадратичной функции самостоятельно. Например, постройте в одной системе координат с помощью преобразований график функции y = 2(x + 3) 2 + 2. Если у вас возникнут вопросы или же вы захотите получить консультацию учителя, то у вас есть возможность провести бесплатное 25-минутное занятие с онлайн репетитором после регистрации . Для дальнейшей работы с преподавателем вы сможете выбрать подходящий вам тарифный план.

Остались вопросы? Не знаете, как построить график квадратичной функции?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Понравилась статья? Поделиться с друзьями: