Геометрические фигуры. Прямоугольник

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

Прямоугольник. Так как прямоугольник имеет две оси симметрии, то его центр тяжести находится на пересечении осей симметрии, т.е. в точке пересечения диагоналей прямоугольника.

Треугольник. Центр тяжести лежит в точке пересечения его медиан. Из геометрии известно, что медианы треугольника пересекаются в одной точке и делятся в отношении 1:2 от основания.

Круг. Так как круг имеет две оси симметрии, то его центр тяжести находится на пересечении осей симметрии.

Полукруг. Полукруг имеет одну ось симметрии, то центр тяжести лежит на этой оси. Другая координата центра тяжести вычисляется по формуле: .

Многие конструктивные элементы изготавливают из стандартного проката – уголков, двутавров, швеллеров и других. Все размеры, а так же геометрические характеристики прокатных профилей это табличные данные, которые можно найти в справочной литературе в таблицах нормального сортамента (ГОСТ 8239-89, ГОСТ 8240-89).

Пример 1. Определить положение центра тяжести фигуры, представленной на рисунке.

Решение:

    Выбираем оси координат, так чтобы ось Ох прошла по крайнему нижнему габаритному размеру, а ось Оу – по крайнему левому габаритному размеру.

    Разбиваем сложную фигуру на минимальное количество простых фигур:

    прямоугольник 20х10;

    треугольник 15х10;

    круг R=3 см.

    Вычисляем площадь каждой простой фигуры, её координаты центра тяжести. Результаты вычислений заносим в таблицу

№ фигуры

Площадь фигуры А,

Координаты центра тяжести

Ответ: С(14,5; 4,5)

Пример 2 . Определить координаты центра тяжести составного сечения, состоящего из листа и прокатных профилей.

Решение.

    Выбираем оси координат, так как показано на рисунке.

    Обозначим фигуры номерами и выпишем из таблицы необходимые данные:

№ фигуры

Площадь фигуры А,

Координаты центра тяжести

    Вычисляем координаты центра тяжести фигуры по формулам:

Ответ: С(0; 10)

Лабораторная работа №1 «Определение центра тяжести составных плоских фигур»

Цель: Определить центр тяжести заданной плоской сложной фигуры опытным и аналитическим способами и сравнить их результаты.

Порядок выполнения работы

    Начертить в тетрадях свою плоскую фигуру по размерам, с указанием осей координат.

    Определить центр тяжести аналитическим способом.

    1. Разбить фигуру на минимальное количество фигур, центры тяжести которых, мы знаем, как определить.

      Указать номера площадей и координаты центра тяжести каждой фигуры.

      Вычислить координаты центра тяжести каждой фигуры.

      Вычислить площадь каждой фигуры.

      Вычислить координаты центра тяжести всей фигуры по формулам (положение центра тяжести нанести на чертеж фигуры):

Установка для опытного определения координат центра тяжести способом подвешивания состоит из вертикальной стойки 1 (см. рис.), к которой прикреплена игла 2 . Плоская фигура 3 изготовлена из картона, в котором легко проколоть отверстие. Отверстия А и В прокалываются в произвольно расположенных точках (лучше на наиболее удаленном расстоянии друг от друга). Плоская фигура подвешивается на иглу сначала в точке А , а потом в точке В . При помощи отвеса 4 , закрепленного на той же игле, на фигуре прочерчивают карандашом вертикальную линию, соответствующую нити отвеса. Центр тяжести С фигуры будет находиться в точке пересечения вертикальных линий, нанесенных при подвешивании фигуры в точках А и В .

4. Формула радиуса окружности, которая описана около прямоугольника через диагональ квадрата :

5. Формула радиуса окружности, которая описана около прямоугольника через диаметр окружности (описанной):

6. Формула радиуса окружности, которая описана около прямоугольника через синус угла, который прилегает к диагонали, и длину стороны противолежащей этому углу:

7. Формула радиуса окружности, которая описана около прямоугольника через косинус угла, который прилегает к диагонали, и длину стороны у этого угла:

8. Формула радиуса окружности, которая описана около прямоугольника через синус острого угла между диагоналями и площадью прямоугольника:

Угол между стороной и диагональю прямоугольника.

Формулы для определения угла между стороной и диагональю прямоугольника:

1. Формула определения угла между стороной и диагональю прямоугольника через диагональ и сторону:

2. Формула определения угла между стороной и диагональю прямоугольника через угол между диагоналями:

Угол между диагоналями прямоугольника.

Формулы для определения угла меж диагоналей прямоугольника:

1. Формула определения угла меж диагоналей прямоугольника через угол между стороной и диагональю:

β = 2α

2. Формула определения угла между диагоналями прямоугольника через площадь и диагональ.

Понравилась статья? Поделиться с друзьями: